[noise] smol refactor

This commit is contained in:
c0repwn3r 2022-12-15 10:55:22 -05:00
parent e8c4aa7d25
commit a9ced39c41
Signed by: core
GPG Key ID: FDBF740DADDCEECF
7 changed files with 321 additions and 306 deletions

View File

@ -0,0 +1,186 @@
//! `Noise_IKpsk2` handshake initiator packets
use rand::{Rng, thread_rng};
use x25519_dalek::{PublicKey};
use crate::noise::error::NoiseError;
use crate::noise::handshake::{HANDSHAKE_INITIATOR_CHAIN_KEY, HANDSHAKE_INITIATOR_CHAIN_KEY_HASH, HandshakeState, needs_cookie};
use crate::qcrypto::aead::{qcrypto_aead, qcrypto_aead_decrypt};
use crate::qcrypto::hashes::{qcrypto_hash_twice, qcrypto_mac};
use crate::qcrypto::hkdf::qcrypto_hkdf;
use crate::qcrypto::pki::{qcrypto_dh_ephemeral, qcrypto_dh_generate_ephemeral, qcrypto_dh_longterm};
use crate::qcrypto::{LABEL_MAC1, timestamp};
/// Generate a handshake initiator packet and encrypt it using the given session state, starting a new handshake state
/// # Errors
/// This function will error if encryption was unsuccessful
/// # Panics
/// While containing unwraps, this function will never panic.
#[allow(clippy::module_name_repetitions)]
pub fn handshake_init_to(session: &mut HandshakeState) -> Result<[u8; 148], NoiseError> {
session.s_pub_i = PublicKey::from(&session.s_priv_me);
session.s_pub_r = session.s_pub_them;
session.i_i = thread_rng().gen();
let mut msg = HandshakeInitiatorRaw {
sender: session.i_i.to_le_bytes(),
ephemeral: [0u8; 32],
static_pub: [0u8; 32 + 16],
timestamp: [0u8; 12 + 16],
mac1: [0u8; 16],
mac2: [0u8; 16]
};
session.ck = HANDSHAKE_INITIATOR_CHAIN_KEY;
session.h = HANDSHAKE_INITIATOR_CHAIN_KEY_HASH;
session.h = qcrypto_hash_twice(&session.h, session.s_pub_r.as_bytes());
let eph_keypair = qcrypto_dh_generate_ephemeral();
session.ck = qcrypto_hkdf::<1>(&session.ck, eph_keypair.1.as_bytes())[0];
session.e_pub_i = eph_keypair.1;
msg.ephemeral = eph_keypair.1.to_bytes();
session.h = qcrypto_hash_twice(&session.h, &msg.ephemeral);
let ci_k_pair = qcrypto_hkdf::<2>(&session.ck, qcrypto_dh_ephemeral(eph_keypair.0, &session.s_pub_r).as_bytes());
session.ck = ci_k_pair[0];
let k = ci_k_pair[1];
// This unwrap is safe because the output length is a known constant with these inputs
msg.static_pub = match qcrypto_aead(&k, 0, session.s_pub_i.as_bytes(), &session.h) {
Ok(s) => s,
Err(e) => return Err(NoiseError::ChaCha20Error(e))
}.try_into().unwrap();
session.h = qcrypto_hash_twice(&session.h, &msg.static_pub);
let ci_k_pair = qcrypto_hkdf::<2>(&session.ck, qcrypto_dh_longterm(&session.s_priv_me, &session.s_pub_r).as_bytes());
session.ck = ci_k_pair[0];
let k = ci_k_pair[1];
// This unwrap is safe because the output length is a known constant with these inputs
msg.timestamp = match qcrypto_aead(&k, 0, &timestamp().to_bytes(), &session.h) {
Ok(s) => s,
Err(e) => return Err(NoiseError::ChaCha20Error(e))
}.try_into().unwrap();
session.h = qcrypto_hash_twice(&session.h, &msg.timestamp);
Ok(msg.to_bytes(session))
}
struct HandshakeInitiatorRaw {
sender: [u8; 4],
ephemeral: [u8; 32],
static_pub: [u8; 32 + 16],
timestamp: [u8; 12 + 16],
mac1: [u8; 16],
mac2: [u8; 16]
}
impl HandshakeInitiatorRaw {
fn to_bytes(&self, session: &HandshakeState) -> [u8; 148] {
let mut output = [0u8; 148];
output[0] = 1u8;
output[4..8].copy_from_slice(&self.sender);
output[8..40].copy_from_slice(&self.ephemeral);
output[40..88].copy_from_slice(&self.static_pub);
output[88..116].copy_from_slice(&self.timestamp);
let mac1: [u8; 16] = qcrypto_mac(&qcrypto_hash_twice(LABEL_MAC1.as_bytes(), session.s_pub_i.as_bytes()), &output[..116]);
output[116..132].copy_from_slice(&mac1);
let mac2 = if needs_cookie(session) { qcrypto_mac(&session.cookies[session.cookies.len() - 1].cookie, &packet[..132]) } else { [0u8; 16] };
output[132..148].copy_from_slice(&mac2);
output
}
fn from_bytes(bytes: [u8; 148]) -> Self {
Self {
sender: bytes[4..8].try_into().unwrap(),
ephemeral: bytes[8..40].try_into().unwrap(),
static_pub: bytes[40..88].try_into().unwrap(),
timestamp: bytes[88..116].try_into().unwrap(),
mac1: bytes[116..132].try_into().unwrap(),
mac2: bytes[132..148].try_into().unwrap()
}
}
}
/// Parse a handshake initiator packet and encrypt it using the given session state, updating the session state with decrypted and authenticated values
/// # Errors
/// This function will error if decryption was unsuccessful
/// # Panics
/// While containing unwraps, this function will never panic.
#[allow(clippy::module_name_repetitions)]
pub fn handshake_init_from(session: &mut HandshakeState, packet: [u8; 148]) -> Result<(), NoiseError> {
let s_pub_i = session.s_pub_them;
let s_pub_r = PublicKey::from(&session.s_priv_me);
let msg = HandshakeInitiatorRaw::from_bytes(packet);
let i_i = u32::from_le_bytes(msg.sender);
let ck = HANDSHAKE_INITIATOR_CHAIN_KEY;
let h = HANDSHAKE_INITIATOR_CHAIN_KEY_HASH;
let h = qcrypto_hash_twice(&h, s_pub_r.as_bytes());
let ephemeral_public = msg.ephemeral;
let eph_pub = PublicKey::from(ephemeral_public);
let e_pub_i = eph_pub;
let ck = qcrypto_hkdf::<1>(&ck, eph_pub.as_bytes())[0];
let h = qcrypto_hash_twice(&h, &msg.ephemeral);
let ci_k_pair = qcrypto_hkdf::<2>(&ck, qcrypto_dh_longterm(&session.s_priv_me, &eph_pub).as_bytes());
let ck = ci_k_pair[0];
let k = ci_k_pair[1];
// This unwrap is safe because the output length is a known constant with these inputs
session.s_pub_i = PublicKey::from(<Vec<u8> as TryInto<[u8; 32]>>::try_into(match qcrypto_aead_decrypt(&k, 0, &msg.static_pub, &h) {
Ok(s) => s,
Err(e) => return Err(NoiseError::ChaCha20Error(e))
}).unwrap());
let h = qcrypto_hash_twice(&h, &msg.static_pub);
let ci_k_pair = qcrypto_hkdf::<2>(&ck, qcrypto_dh_longterm(&session.s_priv_me, &session.s_pub_i).as_bytes());
let ck = ci_k_pair[0];
let k = ci_k_pair[1];
// This unwrap is safe because the output length is a known constant with these inputs
let _sent_timestamp: [u8; 12] = match qcrypto_aead_decrypt(&k, 0, &msg.timestamp, &h) {
Ok(s) => s,
Err(e) => return Err(NoiseError::ChaCha20Error(e))
}.try_into().unwrap();
let h = qcrypto_hash_twice(&h, &msg.timestamp);
// we need to check mac1 and mac2
let mac1: [u8; 16] = qcrypto_mac(&qcrypto_hash_twice(LABEL_MAC1.as_bytes(), session.s_pub_i.as_bytes()), &packet[..116]);
let mac2 = if needs_cookie(session) { qcrypto_mac(&session.cookies[session.cookies.len() - 1].cookie, &packet[..132]) } else { [0u8; 16] };
if mac1 != msg.mac1 || mac2 != msg.mac2 {
return Err(NoiseError::PacketUnauthenticated)
}
session.h = h;
session.ck = ck;
session.e_pub_i = e_pub_i;
session.s_pub_i = s_pub_i;
session.s_pub_r = s_pub_r;
session.i_i = i_i;
Ok(())
}

View File

@ -0,0 +1,86 @@
//! `Noise_IKpsk2` handshake, specifically the way WireGuard defines it
use std::fmt::{Debug, Formatter};
use tai64::Tai64N;
use x25519_dalek::{EphemeralSecret, PublicKey, StaticSecret};
use crate::qcrypto::timestamp;
pub mod initiator;
pub mod response;
#[cfg(test)]
pub mod tests;
/// The Blake2s hash of the construction
pub const HANDSHAKE_INITIATOR_CHAIN_KEY: [u8; 32] = [
96, 226, 109, 174, 243, 39, 239, 192, 46, 195, 53, 226, 160, 37, 210, 208, 22, 235, 66, 6, 248,
114, 119, 245, 45, 56, 209, 152, 139, 120, 205, 54,
];
/// The hashed chaining key
pub const HANDSHAKE_INITIATOR_CHAIN_KEY_HASH: [u8; 32] = [
34, 17, 179, 97, 8, 26, 197, 102, 105, 18, 67, 219, 69, 138, 213, 50, 45, 156, 108, 102, 34,
147, 232, 183, 14, 225, 156, 101, 186, 7, 158, 243,
];
/// Represents a cookie we got from the other peer
#[derive(Debug)]
pub struct Cookie {
time: Tai64N,
cookie: [u8; 16]
}
/// Represents the internal handshake state. This does not really need to be messed with by outside users
#[allow(missing_docs)]
#[allow(clippy::module_name_repetitions)]
pub struct HandshakeState {
pub h: [u8; 32],
pub ck: [u8; 32],
pub e_pub_i: PublicKey,
pub s_pub_i: PublicKey,
pub s_pub_r: PublicKey,
pub e_priv_me: EphemeralSecret,
pub s_priv_me: StaticSecret,
pub s_pub_them: PublicKey,
pub i_i: u32,
pub i_r: u32,
pub cookies: Vec<Cookie>
}
impl HandshakeState {
/// Determines if the state variables of this `HandshakeState` are the same as another
#[allow(clippy::suspicious_operation_groupings)]
pub fn is_eq(&self, other: &HandshakeState) -> bool {
self.h == other.h && self.ck == other.ck && self.e_pub_i == other.e_pub_i && self.s_pub_i == other.s_pub_i && self.s_pub_r == other.s_pub_r && self.i_i == other.i_i && self.i_r == other.i_r
}
}
impl Debug for HandshakeState {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
f.debug_struct("HandshakeState")
.field("h", &self.h)
.field("ck", &self.ck)
.field("e_pub_i", &self.e_pub_i)
.field("s_pub_i", &self.s_pub_i)
.field("s_pub_r", &self.s_pub_r)
.field("e_priv_me", &"<redacted>")
.field("s_priv_me", &"<redacted>")
.field("s_pub_them", &self.s_pub_them)
.field("i_i", &self.i_i)
.field("i_r", &self.i_r)
.field("cookies", &self.cookies).finish()
}
}
/// Determines if a cookie MAC needs to be added to the packet being sent
pub fn needs_cookie(session: &HandshakeState) -> bool {
if !session.cookies.is_empty() {
let past_cookie_timeout = session.cookies[session.cookies.len()-1].time.duration_since(&timestamp()).map_or(true, |t| t.as_secs() >= 120);
if !past_cookie_timeout {
return true;
}
}
false
}

View File

@ -0,0 +1 @@
//! `Noise_IKpsk2` handshake response packet

View File

@ -0,0 +1,46 @@
use rand::rngs::OsRng;
use x25519_dalek::{EphemeralSecret, PublicKey};
use crate::noise::handshake::HandshakeState;
use crate::noise::handshake::initiator::{handshake_init_from, handshake_init_to};
use crate::qcrypto::pki::qcrypto_dh_generate_longterm;
#[test]
fn noise_halfhandshake_test() {
let alice_keypair = qcrypto_dh_generate_longterm();
let bob_keypair = qcrypto_dh_generate_longterm();
let mut alice_session = HandshakeState {
h: [0u8; 32],
ck: [0u8; 32],
e_pub_i: PublicKey::from([0u8; 32]),
s_pub_i: PublicKey::from([0u8; 32]),
s_pub_r: PublicKey::from([0u8; 32]),
e_priv_me: EphemeralSecret::new(OsRng),
s_priv_me: alice_keypair.0,
s_pub_them: bob_keypair.1,
i_i: 0,
i_r: 0,
cookies: vec![],
};
let mut bob_session = HandshakeState {
h: [0u8; 32],
ck: [0u8; 32],
e_pub_i: PublicKey::from([0u8; 32]),
s_pub_i: PublicKey::from([0u8; 32]),
s_pub_r: PublicKey::from([0u8; 32]),
e_priv_me: EphemeralSecret::new(OsRng),
s_priv_me: bob_keypair.0,
s_pub_them: alice_keypair.1,
i_i: 0,
i_r: 0,
cookies: vec![],
};
let handshake_init = handshake_init_to(&mut alice_session).unwrap();
handshake_init_from(&mut bob_session, handshake_init).unwrap();
println!("{:?}", alice_session);
println!("{:?}", bob_session);
assert!(alice_session.is_eq(&bob_session));
}

View File

@ -1,261 +0,0 @@
//! `Noise_IKpsk2` handshake initiator packets
use std::fmt::{Debug, Formatter};
use std::mem;
use rand::{Rng, thread_rng};
use tai64::Tai64N;
use x25519_dalek::{EphemeralSecret, PublicKey, StaticSecret};
use crate::noise::error::NoiseError;
use crate::qcrypto::aead::{qcrypto_aead, qcrypto_aead_decrypt};
use crate::qcrypto::hashes::{qcrypto_hash_twice, qcrypto_mac};
use crate::qcrypto::hkdf::qcrypto_hkdf;
use crate::qcrypto::pki::{qcrypto_dh_ephemeral, qcrypto_dh_generate_ephemeral, qcrypto_dh_longterm};
use crate::qcrypto::{LABEL_MAC1, timestamp};
/// The Blake2s hash of the construction
pub const HANDSHAKE_INITIATOR_CHAIN_KEY: [u8; 32] = [
96, 226, 109, 174, 243, 39, 239, 192, 46, 195, 53, 226, 160, 37, 210, 208, 22, 235, 66, 6, 248,
114, 119, 245, 45, 56, 209, 152, 139, 120, 205, 54,
];
/// The hashed chaining key
pub const HANDSHAKE_INITIATOR_CHAIN_KEY_HASH: [u8; 32] = [
34, 17, 179, 97, 8, 26, 197, 102, 105, 18, 67, 219, 69, 138, 213, 50, 45, 156, 108, 102, 34,
147, 232, 183, 14, 225, 156, 101, 186, 7, 158, 243,
];
/// Represents a cookie we got from the other peer
#[derive(Debug)]
pub struct Cookie {
time: Tai64N,
cookie: [u8; 16]
}
/// Represents the internal handshake state. This does not really need to be messed with by outside users
#[allow(missing_docs)]
#[allow(clippy::module_name_repetitions)]
pub struct HandshakeState {
pub h_i: [u8; 32],
pub c_i: [u8; 32],
pub e_pub_i: PublicKey,
pub s_pub_i: PublicKey,
pub s_pub_r: PublicKey,
pub e_priv_me: EphemeralSecret,
pub s_priv_me: StaticSecret,
pub s_pub_them: PublicKey,
pub i_i: u32,
pub i_r: u32,
pub cookies: Vec<Cookie>
}
impl HandshakeState {
/// Determines if the state variables of this `HandshakeState` are the same as another
pub fn is_eq(&self, other: &HandshakeState) -> bool {
self.h_i == other.h_i && self.c_i == other.c_i && self.e_pub_i == other.e_pub_i && self.s_pub_i == other.s_pub_i && self.s_pub_r == other.s_pub_r && self.i_i == other.i_i && self.i_r == other.i_r
}
}
impl Debug for HandshakeState {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
f.debug_struct("HandshakeState")
.field("h_i", &self.h_i)
.field("c_i", &self.c_i)
.field("e_pub_i", &self.e_pub_i)
.field("s_pub_i", &self.s_pub_i)
.field("s_pub_r", &self.s_pub_r)
.field("e_priv_me", &"<redacted>")
.field("s_priv_me", &"<redacted>")
.field("s_pub_them", &self.s_pub_them)
.field("i_i", &self.i_i)
.field("i_r", &self.i_r)
.field("cookies", &self.cookies).finish()
}
}
/// Generate a handshake initiator packet and encrypt it using the given session state, starting a new handshake state
/// # Errors
/// This function will error if encryption was unsuccessful
/// # Panics
/// While containing unwraps, this function will never panic.
#[allow(clippy::module_name_repetitions)]
pub fn handshake_init_to(session: &mut HandshakeState) -> Result<[u8; 148], NoiseError> {
session.s_pub_i = PublicKey::from(&session.s_priv_me);
session.s_pub_r = session.s_pub_them;
session.i_i = thread_rng().gen();
let mut msg = HandshakeInitiatorRaw {
sender: session.i_i.to_le_bytes(),
ephemeral: [0u8; 32],
static_pub: [0u8; 32 + 16],
timestamp: [0u8; 12 + 16],
mac1: [0u8; 16],
mac2: [0u8; 16]
};
session.c_i = HANDSHAKE_INITIATOR_CHAIN_KEY;
session.h_i = HANDSHAKE_INITIATOR_CHAIN_KEY_HASH;
session.h_i = qcrypto_hash_twice(&session.h_i, session.s_pub_r.as_bytes());
let eph_keypair = qcrypto_dh_generate_ephemeral();
session.c_i = qcrypto_hkdf::<1>(&session.c_i, eph_keypair.1.as_bytes())[0];
session.e_pub_i = eph_keypair.1;
msg.ephemeral = eph_keypair.1.to_bytes();
session.h_i = qcrypto_hash_twice(&session.h_i, &msg.ephemeral);
let ci_k_pair = qcrypto_hkdf::<2>(&session.c_i, qcrypto_dh_ephemeral(eph_keypair.0, &session.s_pub_r).as_bytes());
session.c_i = ci_k_pair[0];
let k = ci_k_pair[1];
// This unwrap is safe because the output length is a known constant with these inputs
msg.static_pub = match qcrypto_aead(&k, 0, session.s_pub_i.as_bytes(), &session.h_i) {
Ok(s) => s,
Err(e) => return Err(NoiseError::ChaCha20Error(e))
}.try_into().unwrap();
session.h_i = qcrypto_hash_twice(&session.h_i, &msg.static_pub);
let ci_k_pair = qcrypto_hkdf::<2>(&session.c_i, qcrypto_dh_longterm(&session.s_priv_me, &session.s_pub_r).as_bytes());
session.c_i = ci_k_pair[0];
let k = ci_k_pair[1];
// This unwrap is safe because the output length is a known constant with these inputs
msg.timestamp = match qcrypto_aead(&k, 0, &timestamp().to_bytes(), &session.h_i) {
Ok(s) => s,
Err(e) => return Err(NoiseError::ChaCha20Error(e))
}.try_into().unwrap();
session.h_i = qcrypto_hash_twice(&session.h_i, &msg.timestamp);
Ok(msg.to_bytes(session))
}
struct HandshakeInitiatorRaw {
sender: [u8; 4],
ephemeral: [u8; 32],
static_pub: [u8; 32 + 16],
timestamp: [u8; 12 + 16],
mac1: [u8; 16],
mac2: [u8; 16]
}
impl HandshakeInitiatorRaw {
fn to_bytes(&self, session: &HandshakeState) -> [u8; 148] {
let mut output = [0u8; 148];
output[0] = 1u8;
output[4..8].copy_from_slice(&self.sender);
output[8..40].copy_from_slice(&self.ephemeral);
output[40..88].copy_from_slice(&self.static_pub);
output[88..116].copy_from_slice(&self.timestamp);
let mac1: [u8; 16] = qcrypto_mac(&qcrypto_hash_twice(LABEL_MAC1.as_bytes(), session.s_pub_i.as_bytes()), &output[..116]);
output[116..132].copy_from_slice(&mac1);
let mut mac2 = [0u8; 16];
if !session.cookies.is_empty() {
let past_cookie_timeout = session.cookies[session.cookies.len()-1].time.duration_since(&timestamp()).map_or(true, |t| t.as_secs() >= 120);
if !past_cookie_timeout {
mac2 = qcrypto_mac(&session.cookies[session.cookies.len()-1].cookie, &output[..132]);
}
}
output[132..148].copy_from_slice(&mac2);
output
}
fn from_bytes(bytes: [u8; 148]) -> Self {
Self {
sender: bytes[4..8].try_into().unwrap(),
ephemeral: bytes[8..40].try_into().unwrap(),
static_pub: bytes[40..88].try_into().unwrap(),
timestamp: bytes[88..116].try_into().unwrap(),
mac1: bytes[116..132].try_into().unwrap(),
mac2: bytes[132..148].try_into().unwrap()
}
}
}
/// Parse a handshake initiator packet and encrypt it using the given session state, updating the session state with decrypted and authenticated values
/// # Errors
/// This function will error if decryption was unsuccessful
/// # Panics
/// While containing unwraps, this function will never panic.
#[allow(clippy::module_name_repetitions)]
pub fn handshake_init_from(session_orig: &mut HandshakeState, packet: [u8; 148]) -> Result<(), NoiseError> {
let mut session = session_orig.clone();
session.s_pub_i = session.s_pub_them;
session.s_pub_r = PublicKey::from(&session.s_priv_me);
let mut msg = HandshakeInitiatorRaw::from_bytes(packet);
session.i_i = u32::from_le_bytes(msg.sender);
session.c_i = HANDSHAKE_INITIATOR_CHAIN_KEY;
session.h_i = HANDSHAKE_INITIATOR_CHAIN_KEY_HASH;
session.h_i = qcrypto_hash_twice(&session.h_i, session.s_pub_r.as_bytes());
let ephemeral_public = msg.ephemeral;
let eph_pub = PublicKey::from(ephemeral_public);
session.e_pub_i = eph_pub;
session.c_i = qcrypto_hkdf::<1>(&session.c_i, eph_pub.as_bytes())[0];
session.h_i = qcrypto_hash_twice(&session.h_i, &msg.ephemeral);
let ci_k_pair = qcrypto_hkdf::<2>(&session.c_i, qcrypto_dh_longterm(&session.s_priv_me, &eph_pub).as_bytes());
session.c_i = ci_k_pair[0];
let k = ci_k_pair[1];
// This unwrap is safe because the output length is a known constant with these inputs
session.s_pub_i = PublicKey::from(<Vec<u8> as TryInto<[u8; 32]>>::try_into(match qcrypto_aead_decrypt(&k, 0, &msg.static_pub, &session.h_i) {
Ok(s) => s,
Err(e) => return Err(NoiseError::ChaCha20Error(e))
}).unwrap());
session.h_i = qcrypto_hash_twice(&session.h_i, &msg.static_pub);
let ci_k_pair = qcrypto_hkdf::<2>(&session.c_i, qcrypto_dh_longterm(&session.s_priv_me, &session.s_pub_i).as_bytes());
session.c_i = ci_k_pair[0];
let k = ci_k_pair[1];
// This unwrap is safe because the output length is a known constant with these inputs
let sent_timestamp: [u8; 12] = match qcrypto_aead_decrypt(&k, 0, &msg.timestamp, &session.h_i) {
Ok(s) => s,
Err(e) => return Err(NoiseError::ChaCha20Error(e))
}.try_into().unwrap();
session.h_i = qcrypto_hash_twice(&session.h_i, &msg.timestamp);
// we need to check mac1 and mac2
let mac1: [u8; 16] = qcrypto_mac(&qcrypto_hash_twice(LABEL_MAC1.as_bytes(), session.s_pub_i.as_bytes()), &packet[..116]);
let mut mac2 = [0u8; 16];
if !session.cookies.is_empty() {
let past_cookie_timeout = session.cookies[session.cookies.len()-1].time.duration_since(&timestamp()).map_or(true, |t| t.as_secs() >= 120);
if !past_cookie_timeout {
mac2 = qcrypto_mac(&session.cookies[session.cookies.len() - 1].cookie, &packet[..132]);
}
}
if mac1 != msg.mac1 || mac2 != msg.mac2 {
return Err(NoiseError::PacketUnauthenticated)
}
mem::swap(session_orig, &mut session);
Ok(())
}

View File

@ -1,4 +1,4 @@
//! Contains structs and functions for serializing and deserializing different packets in the Noise_IKpsk2 handshake and data frames
pub mod handshake_init;
pub mod handshake;
pub mod error;

View File

@ -1,7 +1,5 @@
use hex_lit::hex;
use rand::rngs::OsRng;
use x25519_dalek::{EphemeralSecret, PublicKey, StaticSecret};
use crate::noise::handshake_init::{handshake_init_from, handshake_init_to, HandshakeState};
use x25519_dalek::{PublicKey};
use crate::qcrypto::aead::{qcrypto_aead, qcrypto_aead_decrypt, qcrypto_xaead, qcrypto_xaead_decrypt};
use crate::qcrypto::{CONSTURCTION, IDENTIFIER};
use crate::qcrypto::hashes::{qcrypto_hash, qcrypto_hash_twice, qcrypto_hmac, qcrypto_mac};
@ -59,44 +57,3 @@ fn qcrypto_hkdf_test() {
let derived = qcrypto_hkdf::<1>(&[0u8; 32], &[0u8; 32]);
assert_eq!(derived, [hex!("1090894613df8aef670b0b867e222daebc0d3e436cdddbc16c65855ab93cc91a")]);
}
#[test]
fn noise_halfhandshake_test() {
let alice_keypair = qcrypto_dh_generate_longterm();
let bob_keypair = qcrypto_dh_generate_longterm();
let mut alice_session = HandshakeState {
h_i: [0u8; 32],
c_i: [0u8; 32],
e_pub_i: PublicKey::from([0u8; 32]),
s_pub_i: PublicKey::from([0u8; 32]),
s_pub_r: PublicKey::from([0u8; 32]),
e_priv_me: EphemeralSecret::new(OsRng),
s_priv_me: alice_keypair.0,
s_pub_them: bob_keypair.1,
i_i: 0,
i_r: 0,
cookies: vec![],
};
let mut bob_session = HandshakeState {
h_i: [0u8; 32],
c_i: [0u8; 32],
e_pub_i: PublicKey::from([0u8; 32]),
s_pub_i: PublicKey::from([0u8; 32]),
s_pub_r: PublicKey::from([0u8; 32]),
e_priv_me: EphemeralSecret::new(OsRng),
s_priv_me: bob_keypair.0,
s_pub_them: alice_keypair.1,
i_i: 0,
i_r: 0,
cookies: vec![],
};
let handshake_init = handshake_init_to(&mut alice_session).unwrap();
handshake_init_from(&mut bob_session, handshake_init).unwrap();
println!("{:?}", alice_session);
println!("{:?}", bob_session);
assert!(alice_session.is_eq(&bob_session));
}