Compare commits

..

No commits in common. "ecd92d0e1800fc02c7194d6208da268fe452597e" and "d2e1a8555453ab2957196b7c2dc3e7f5dd78c92e" have entirely different histories.

21 changed files with 117 additions and 3859 deletions

View File

@ -2,10 +2,7 @@
<module type="CPP_MODULE" version="4">
<component name="NewModuleRootManager">
<content url="file://$MODULE_DIR$">
<sourceFolder url="file://$MODULE_DIR$/certtoolpf/src" isTestSource="false" />
<sourceFolder url="file://$MODULE_DIR$/libepf/src" isTestSource="false" />
<sourceFolder url="file://$MODULE_DIR$/ncpf/src" isTestSource="false" />
<sourceFolder url="file://$MODULE_DIR$/netcatpf/src" isTestSource="false" />
<excludeFolder url="file://$MODULE_DIR$/libepf/target" />
<excludeFolder url="file://$MODULE_DIR$/target" />
</content>

944
Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@ -1,7 +1,4 @@
[workspace]
members = [
"libepf",
"ncpf",
"netcatpf",
"certtoolpf"
"libepf"
]

View File

@ -1,12 +0,0 @@
[package]
name = "certtoolpf"
version = "0.1.0"
edition = "2021"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
inquire = "0.6.1"
libepf = { version = "0.1.0", path = "../libepf" }
clap = { version = "4", features = ["derive", "cargo"] }
rand = "0.8.5"

View File

@ -1,353 +0,0 @@
use clap::{Parser, Subcommand};
use inquire::{Confirm, Select, Text};
use libepf::ca_pool::load_ca_pool;
use libepf::pki::{
EPFCertificate, EPFCertificateDetails, EpfPkiCertificateOps, EpfPkiSerializable, EpfPrivateKey,
EpfPublicKey,
};
use rand::rngs::OsRng;
use std::collections::HashMap;
use std::fs;
use std::path::PathBuf;
use std::time::{SystemTime, UNIX_EPOCH};
#[derive(Parser)]
#[command(author, version, about, long_about = None)]
struct Cli {
#[command(subcommand)]
command: Option<Commands>,
}
#[derive(Subcommand)]
enum Commands {
/// Generate a public and private keypair
GenerateKeypair {
#[arg(short = 'p', long)]
out_public_key: PathBuf,
#[arg(short = 'k', long)]
out_private_key: PathBuf,
},
/// Create a new **unsigned** certificate
CreateCertificate {
#[arg(short, long)]
output: PathBuf,
#[arg(short, long)]
public_key: PathBuf,
},
/// Dump information about the certificate
DumpCertificate { cert: PathBuf },
/// Verify the certificate
VerifyCertificate { cert: PathBuf },
/// Sign the certificate using the given private key
SignCertificate {
cert: PathBuf,
#[arg(short, long)]
key: PathBuf,
#[arg(short, long)]
output: PathBuf,
},
}
fn main() {
let args = Cli::parse();
if let Some(subcommand) = args.command {
match subcommand {
Commands::GenerateKeypair {
out_private_key,
out_public_key,
} => {
let private_key = EpfPrivateKey::generate(&mut OsRng);
let public_key = private_key.verifying_key();
let private_key_pem = match private_key.as_pem() {
Ok(pem) => pem,
Err(e) => {
println!("Error while serializing private key: {}", e);
std::process::exit(1);
}
};
let public_key_pem = match public_key.as_pem() {
Ok(pem) => pem,
Err(e) => {
println!("Error while serializing public key: {}", e);
std::process::exit(1);
}
};
match std::fs::write(out_private_key, private_key_pem) {
Ok(_) => (),
Err(e) => {
println!("Error saving private key: {}", e);
std::process::exit(1);
}
}
match std::fs::write(out_public_key, public_key_pem) {
Ok(_) => (),
Err(e) => {
println!("Error saving public key: {}", e);
std::process::exit(1);
}
}
}
Commands::CreateCertificate { output, public_key } => {
// load public key
let public_key_pem = match fs::read(public_key) {
Ok(pem) => pem,
Err(e) => {
println!("Unable to load public key: {}", e);
std::process::exit(1);
}
};
let public_key = match EpfPublicKey::from_pem(&public_key_pem) {
Ok(k) => k,
Err(e) => {
println!("Error parsing public key: {}", e);
std::process::exit(1);
}
};
let name = match Text::new("Certificate name?").prompt() {
Ok(n) => n,
Err(e) => {
println!("Error with prompt: {}", e);
std::process::exit(1);
}
};
let options = vec![
"1 day", "1 week", "1 month", "6 months", "1 year", "2 years", "5 years",
"10 years", "Forever",
];
let expires_in =
match Select::new("How long should the certificate be valid for?", options)
.prompt()
{
Ok(expires_in) => expires_in,
Err(e) => {
println!("Error with prompt: {}", e);
std::process::exit(1);
}
};
let expires_in = match expires_in {
"1 day" => 60 * 60 * 24,
"1 week" => 60 * 60 * 24 * 7,
"1 month" => 60 * 60 * 24 * 7 * 4,
"6 months" => 60 * 60 * 24 * 7 * 4 * 6,
"1 year" => 60 * 60 * 24 * 7 * 4 * 6 * 2,
"2 years" => 60 * 60 * 24 * 7 * 4 * 6 * 2 * 2,
"5 years" => 60 * 60 * 24 * 7 * 4 * 6 * 2 * 5,
"10 years" => 60 * 60 * 24 * 7 * 4 * 6 * 2 * 10,
"Forever" => 60 * 60 * 24 * 7 * 4 * 6 * 2 * 100000, // 100,000 years
_ => unreachable!(),
};
let add_claims = match Confirm::new(
"Would you like to add additional claims to the certificate?",
)
.with_default(false)
.prompt()
{
Ok(ac) => ac,
Err(e) => {
println!("Error with prompt: {}", e);
std::process::exit(1);
}
};
let mut claims = HashMap::new();
if add_claims {
loop {
let name = match Text::new("Claim name:").prompt() {
Ok(n) => n,
Err(e) => {
println!("Error with prompt: {}", e);
std::process::exit(1);
}
};
let value = match Text::new("Claim value:").prompt() {
Ok(n) => n,
Err(e) => {
println!("Error with prompt: {}", e);
std::process::exit(1);
}
};
claims.insert(name, value);
let add_another = match Confirm::new(
"Would you like to add additional claims to the certificate?",
)
.with_default(true)
.prompt()
{
Ok(ac) => ac,
Err(e) => {
println!("Error with prompt: {}", e);
std::process::exit(1);
}
};
if !add_another {
break;
}
}
}
let mut cert = EPFCertificate {
details: EPFCertificateDetails {
name,
not_before: SystemTime::now()
.duration_since(UNIX_EPOCH)
.expect("Time went backwards")
.as_secs(),
not_after: SystemTime::now()
.duration_since(UNIX_EPOCH)
.expect("Time went backwards")
.as_secs()
+ expires_in,
public_key: public_key.to_bytes(),
issuer_public_key: [0u8; 32],
claims,
},
fingerprint: "".to_string(),
signature: [0u8; 64],
};
match cert.recalculate_fingerprint() {
Ok(_) => (),
Err(e) => {
println!("Error calculating certificate fingerprint: {}", e);
std::process::exit(1);
}
}
let cert_pem = match cert.as_pem() {
Ok(pem) => pem,
Err(e) => {
println!("Error serializing certificate: {}", e);
std::process::exit(1);
}
};
match fs::write(output, cert_pem) {
Ok(_) => (),
Err(e) => {
println!("Error saving certificate: {}", e);
}
}
}
Commands::DumpCertificate { cert } => {
// load cert
let cert_pem = match fs::read(cert) {
Ok(pem) => pem,
Err(e) => {
println!("Unable to load certificate: {}", e);
std::process::exit(1);
}
};
let cert = match EPFCertificate::from_pem(&cert_pem) {
Ok(k) => k,
Err(e) => {
println!("Error parsing certificate: {}", e);
std::process::exit(1);
}
};
println!("{}", cert);
}
Commands::SignCertificate { cert, key, output } => {
// load cert
let cert_pem = match fs::read(cert) {
Ok(pem) => pem,
Err(e) => {
println!("Unable to load certificate: {}", e);
std::process::exit(1);
}
};
let mut cert = match EPFCertificate::from_pem(&cert_pem) {
Ok(k) => k,
Err(e) => {
println!("Error parsing certificate: {}", e);
std::process::exit(1);
}
};
// load key
let key_pem = match fs::read(key) {
Ok(pem) => pem,
Err(e) => {
println!("Unable to load private key: {}", e);
std::process::exit(1);
}
};
let key = match EpfPrivateKey::from_pem(&key_pem) {
Ok(k) => k,
Err(e) => {
println!("Error parsing private key: {}", e);
std::process::exit(1);
}
};
match cert.sign(&key) {
Ok(_) => (),
Err(e) => {
println!("Error signing certificate: {}", e);
std::process::exit(1);
}
}
let cert_pem = match cert.as_pem() {
Ok(pem) => pem,
Err(e) => {
println!("Error serializing certificate: {}", e);
std::process::exit(1);
}
};
match fs::write(output, cert_pem) {
Ok(_) => (),
Err(e) => {
println!("Error saving certificate: {}", e);
}
}
}
Commands::VerifyCertificate { cert } => {
// load cert
let cert_pem = match fs::read(cert) {
Ok(pem) => pem,
Err(e) => {
println!("Unable to load certificate: {}", e);
std::process::exit(1);
}
};
let cert = match EPFCertificate::from_pem(&cert_pem) {
Ok(k) => k,
Err(e) => {
println!("Error parsing certificate: {}", e);
std::process::exit(1);
}
};
let ca_pool = match load_ca_pool() {
Ok(pool) => pool,
Err(e) => {
println!("Unable to load trusted certs pool: {}", e);
std::process::exit(1);
}
};
match cert.verify(&ca_pool) {
Ok(trusted) => {
if !trusted {
println!("Certificate valid but not trusted");
std::process::exit(3);
}
}
Err(e) => {
println!("Certificate invalid: {}", e);
std::process::exit(2);
}
}
}
}
} else {
println!("No subcommand specified. Run with -h/--help for help.");
}
}

View File

@ -14,17 +14,5 @@ hex = "0.4"
sha2 = "0.10"
ed25519-dalek = { version = "2.0.0-rc.2", features = ["rand_core"] }
rand = "0.8"
x25519-dalek = { version = "2.0.0-rc.2", features = ["static_secrets"] }
chrono = "0.4"
tokio = { version = "1.28", features = ["io-util"] }
async-trait = "0.1"
chacha20poly1305 = "0.10"
log = "0.4"
[dev-dependencies]
tokio = { version = "1.28", features = ["io-util", "macros", "rt-multi-thread", "net"] }
tcp-test = "0.1"
futures = "0.3"
simple_logger = "4.1"
hex-literal = "0.4.1"
serial_test = "2.0.0"
x25519-dalek = "2.0.0-rc.2"
chrono = "0.4"

View File

@ -1,11 +1,5 @@
use crate::pki::{EPFCertificate, EpfPkiSerializable, EpfPublicKey};
use crate::util::verifying_key;
use crate::pki::{EPFCertificate, EpfPublicKey};
use std::collections::HashMap;
use std::error::Error;
use std::ffi::OsStr;
use std::fmt::{Display, Formatter};
use std::fs;
pub struct EpfCaPool {
pub ca_lookup_table: HashMap<EpfPublicKey, EPFCertificate>,
@ -30,55 +24,6 @@ impl EpfCaPoolOps for EpfCaPool {
fn insert(&mut self, cert: &EPFCertificate) {
self.ca_lookup_table
.insert(verifying_key(&cert.details.public_key), cert.clone());
}
}
#[derive(Debug)]
pub enum EpfCaPoolLoaderError {
CertDirDoesNotExist(String),
}
impl Display for EpfCaPoolLoaderError {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
match self {
EpfCaPoolLoaderError::CertDirDoesNotExist(d) => {
write!(f, "Certificate dir does not exist: {}", d)
}
}
}
}
impl Error for EpfCaPoolLoaderError {}
#[cfg(unix)]
#[cfg(not(tarpaulin))]
pub fn load_ca_pool() -> Result<EpfCaPool, Box<dyn Error>> {
let mut cert_strings = vec![];
for entry in fs::read_dir("/etc/e3pf/certs")? {
let entry = entry?;
if entry.path().extension() == Some(OsStr::new("pem")) {
cert_strings.push(fs::read_to_string(entry.path())?);
}
}
let mut ca_pool = EpfCaPool::new();
for cert in cert_strings {
ca_pool.insert(&EPFCertificate::from_pem(cert.as_bytes())?);
}
Ok(ca_pool)
}
#[cfg(test)]
mod tests {
use crate::ca_pool::EpfCaPoolLoaderError;
#[test]
pub fn ca_pool_error_display_test() {
println!(
"{}",
EpfCaPoolLoaderError::CertDirDoesNotExist("".to_string())
);
.insert(cert.details.public_key, cert.clone());
}
}

View File

@ -1,51 +0,0 @@
use crate::pki::EpfPkiCertificateValidationError;
use std::error::Error;
use std::fmt::{Display, Formatter};
#[derive(Debug)]
pub enum EpfHandshakeError {
AlreadyTunnelled,
UnsupportedProtocolVersion(usize),
InvalidCertificate(EpfPkiCertificateValidationError),
UntrustedCertificate,
EncryptionError,
MissingKeyProof,
}
impl Display for EpfHandshakeError {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
match self {
EpfHandshakeError::AlreadyTunnelled => write!(f, "Already tunneled"),
EpfHandshakeError::UnsupportedProtocolVersion(v) => {
write!(f, "Unsupported protocol version {}", v)
}
EpfHandshakeError::InvalidCertificate(e) => write!(f, "Invalid certificate: {}", e),
EpfHandshakeError::UntrustedCertificate => {
write!(f, "Certificate valid but not trusted")
}
EpfHandshakeError::EncryptionError => write!(f, "Encryption error"),
EpfHandshakeError::MissingKeyProof => write!(f, "Missing key proof"),
}
}
}
impl Error for EpfHandshakeError {}
#[cfg(test)]
mod tests {
use crate::error::EpfHandshakeError;
use crate::pki::EpfPkiCertificateValidationError;
#[test]
pub fn error_display_test() {
println!("{}", EpfHandshakeError::AlreadyTunnelled);
println!("{}", EpfHandshakeError::UnsupportedProtocolVersion(0));
println!(
"{}",
EpfHandshakeError::InvalidCertificate(
EpfPkiCertificateValidationError::ValidAfterSigner
)
);
println!("{}", EpfHandshakeError::UntrustedCertificate);
println!("{}", EpfHandshakeError::EncryptionError);
println!("{}", EpfHandshakeError::MissingKeyProof);
}
}

View File

@ -1,901 +0,0 @@
use crate::ca_pool::EpfCaPool;
use crate::danger_trace;
use crate::error::EpfHandshakeError;
use crate::pki::{EPFCertificate, EpfPkiCertificateOps, EpfPrivateKey, EpfPublicKey};
use crate::protocol::{
encode_packet, recv_packet, EpfApplicationData, EpfClientHello, EpfClientState, EpfFinished,
EpfMessage, EpfServerHello, EpfServerState, PACKET_APPLICATION_DATA, PACKET_CLIENT_HELLO,
PACKET_FINISHED, PACKET_SERVER_HELLO, PROTOCOL_VERSION,
};
use async_trait::async_trait;
use chacha20poly1305::aead::{Aead, Payload};
use chacha20poly1305::{AeadCore, Key, KeyInit, XChaCha20Poly1305, XNonce};
use ed25519_dalek::SigningKey;
use log::trace;
use rand::rngs::OsRng;
use rand::Rng;
use std::error::Error;
use std::io;
use tokio::io::{AsyncReadExt, AsyncWriteExt};
use x25519_dalek::{PublicKey, StaticSecret};
///// CLIENT /////
pub struct EpfClientUpgraded<T: AsyncWriteExt + AsyncReadExt> {
inner: T,
state: EpfClientState,
client_random: [u8; 24],
server_random: [u8; 16],
client_cert: Option<EPFCertificate>,
packet_queue: Vec<EpfMessage>,
server_cert: Option<EPFCertificate>,
cipher: Option<XChaCha20Poly1305>,
private_key: EpfPrivateKey,
public_key: PublicKey,
}
#[derive(Debug)]
pub enum ClientAuthentication {
Cert(Box<EPFCertificate>, Box<EpfPrivateKey>),
Ephemeral,
}
#[async_trait]
pub trait EpfClientUpgradable {
async fn upgrade(self, auth: ClientAuthentication) -> EpfClientUpgraded<Self>
where
Self: Sized + AsyncWriteExt + AsyncReadExt + Send;
}
#[async_trait]
impl<T> EpfClientUpgradable for T
where
T: AsyncWriteExt + AsyncReadExt + Send,
{
async fn upgrade(self, auth: ClientAuthentication) -> EpfClientUpgraded<Self>
where
Self: Sized + AsyncWriteExt + AsyncReadExt + Send,
{
danger_trace!(target: "EpfClientUpgradable", "upgrade(auth: {:?})", auth);
let private_key;
let public_key;
let cert;
match auth {
ClientAuthentication::Cert(cert_d, key) => {
trace!("----!!!!! CERT AUTHENTICATION !!!!!----");
cert = Some(cert_d);
private_key = key;
public_key = PublicKey::from(&StaticSecret::from(private_key.to_bytes()));
}
ClientAuthentication::Ephemeral => {
cert = None;
let private_key_l: [u8; 32] = OsRng.gen();
let private_key_real = SigningKey::from(private_key_l);
public_key = PublicKey::from(&StaticSecret::from(private_key_real.to_bytes()));
private_key = Box::new(private_key_real);
}
}
EpfClientUpgraded {
inner: self,
state: EpfClientState::NotStarted,
client_random: OsRng.gen(),
server_random: [0u8; 16],
client_cert: cert.map(|u| *u),
server_cert: None,
packet_queue: vec![],
cipher: None,
private_key: *private_key,
public_key,
}
}
}
#[async_trait]
pub trait EpfClientHandshaker<S: AsyncWriteExt + AsyncReadExt + Unpin> {
async fn handshake(&mut self, cert_pool: EpfCaPool) -> Result<(), Box<dyn Error>>;
async fn upgrade(self) -> EpfClientStream<S>
where
Self: Sized;
}
#[async_trait]
impl<T: AsyncWriteExt + AsyncReadExt + Send + Unpin> EpfClientHandshaker<T>
for EpfClientUpgraded<T>
{
async fn handshake(&mut self, cert_pool: EpfCaPool) -> Result<(), Box<dyn Error>> {
match self.state {
EpfClientState::NotStarted => (),
_ => return Err(EpfHandshakeError::AlreadyTunnelled.into()),
}
// Step 1: Send Client Hello
self.inner
.write_all(&encode_packet(
PACKET_CLIENT_HELLO,
&EpfClientHello {
protocol_version: PROTOCOL_VERSION,
client_random: self.client_random,
client_certificate: self.client_cert.clone(),
client_x25519_public_key: self.public_key.to_bytes(),
},
)?)
.await?;
self.inner.flush().await?;
trace!("---- !!!!! SENT CLIENT HELLO");
self.state = EpfClientState::WaitingForServerHello;
let server_x25519_key;
// Step 2: Wait for Server Hello
loop {
trace!("waiting for server hello");
let packet = recv_packet(&mut self.inner).await?;
if packet.packet_id != PACKET_SERVER_HELLO {
self.packet_queue.push(packet);
continue;
}
let server_hello: EpfServerHello = rmp_serde::from_slice(&packet.packet_data)?;
self.server_random = server_hello.server_random;
if server_hello.protocol_version != PROTOCOL_VERSION {
return Err(EpfHandshakeError::UnsupportedProtocolVersion(
server_hello.protocol_version as usize,
)
.into());
}
self.server_cert = Some(server_hello.server_certificate);
server_x25519_key = server_hello.server_x25519_public_key;
break;
}
// Step 3: Validate Server Certificate
let cert_valid = self.server_cert.as_ref().unwrap().verify(&cert_pool);
if let Err(e) = cert_valid {
return Err(EpfHandshakeError::InvalidCertificate(e).into());
}
if let Ok(false) = cert_valid {
return Err(EpfHandshakeError::UntrustedCertificate.into());
}
// Server Cert OK
// Step 4: Build the cipher
let private_key = StaticSecret::from(self.private_key.to_bytes());
let their_public_key = PublicKey::from(server_x25519_key);
assert_ne!(
their_public_key.to_bytes(),
PublicKey::from(&private_key).to_bytes()
);
danger_trace!(
"pr: {}, their pub: {}, my pub: {}",
hex::encode(self.private_key.to_bytes()),
hex::encode(self.server_cert.as_ref().unwrap().details.public_key),
hex::encode(self.private_key.verifying_key().to_bytes())
);
let shared_key = private_key.diffie_hellman(&their_public_key).to_bytes();
trace!(
"server public key: {:x?}",
self.server_cert.as_ref().unwrap().details.public_key
);
danger_trace!("shared key: {}", hex::encode(shared_key));
let cc20p1305_key = Key::from(shared_key);
let cc20p1305 = XChaCha20Poly1305::new(&cc20p1305_key);
self.cipher = Some(cc20p1305);
let payload = Payload {
msg: &[0x42],
aad: &self.server_random,
};
let nonce = XNonce::from_slice(&self.client_random);
trace!("encrypting 0x42");
danger_trace!("aad: {:?} nonce: {:?}", payload.aad, nonce);
let encrypted_0x42 = match self.cipher.as_ref().unwrap().encrypt(nonce, payload) {
Ok(d) => d,
Err(_) => return Err(EpfHandshakeError::EncryptionError.into()),
};
self.inner
.write_all(&encode_packet(
PACKET_FINISHED,
&EpfFinished {
protocol_version: PROTOCOL_VERSION,
encrypted_0x42,
},
)?)
.await?;
self.inner.flush().await?;
self.state = EpfClientState::WaitingForFinished;
loop {
let packet = recv_packet(&mut self.inner).await?;
if packet.packet_id != PACKET_FINISHED {
self.packet_queue.push(packet);
continue;
}
let packet_finished: EpfFinished = rmp_serde::from_slice(&packet.packet_data)?;
trace!("trying to debug 0x42");
let payload = Payload {
msg: &packet_finished.encrypted_0x42,
aad: &self.server_random,
};
danger_trace!(
"ciphertext: {:?}, aad: {:?}, nonce: {:?}",
packet_finished.encrypted_0x42,
payload.aad,
nonce
);
let hopefully_0x42 = match self.cipher.as_ref().unwrap().decrypt(nonce, payload) {
Ok(d) => d,
Err(_) => {
return Err(EpfHandshakeError::EncryptionError.into());
}
};
if hopefully_0x42 != vec![0x42] {
return Err(EpfHandshakeError::MissingKeyProof.into());
}
break;
}
self.state = EpfClientState::Transport;
Ok(())
}
async fn upgrade(self) -> EpfClientStream<T>
where
Self: Sized,
{
let aad = self.server_random;
let client_cert = self.client_cert.clone();
let packet_queue = self.packet_queue.clone();
let server_cert = self.server_cert.unwrap();
let cipher = self.cipher.unwrap();
let private_key = self.private_key.clone();
let public_key = self.public_key;
let raw_stream = self.inner;
EpfClientStream {
raw_stream,
aad,
client_cert,
packet_queue,
server_cert,
cipher,
private_key,
public_key,
}
}
}
#[allow(dead_code)]
pub struct EpfClientStream<S: AsyncReadExt + AsyncWriteExt + Unpin> {
raw_stream: S,
aad: [u8; 16],
client_cert: Option<EPFCertificate>,
packet_queue: Vec<EpfMessage>,
server_cert: EPFCertificate,
cipher: XChaCha20Poly1305,
private_key: EpfPrivateKey,
public_key: PublicKey,
}
#[async_trait]
pub trait EpfStreamOps {
async fn write(&mut self, data: &[u8]) -> Result<(), Box<dyn Error>>;
async fn read(&mut self) -> Result<Vec<u8>, Box<dyn Error>>;
}
#[async_trait]
impl<S: AsyncReadExt + AsyncWriteExt + Unpin + Send> EpfStreamOps for EpfClientStream<S> {
async fn write(&mut self, data: &[u8]) -> Result<(), Box<dyn Error>> {
let nonce = XChaCha20Poly1305::generate_nonce(OsRng);
let payload = Payload {
msg: data,
aad: &self.aad,
};
let ciphertext = match self.cipher.encrypt(&nonce, payload) {
Ok(c) => c,
Err(_) => return Err(io::Error::new(io::ErrorKind::Other, "Encryption error").into()),
};
let application_data = EpfApplicationData {
protocol_version: PROTOCOL_VERSION,
encrypted_application_data: ciphertext,
nonce: nonce.try_into().unwrap(),
};
let packet = encode_packet(PACKET_APPLICATION_DATA, &application_data)?;
self.raw_stream.write_all(&packet).await?;
self.raw_stream.flush().await?;
Ok(())
}
async fn read(&mut self) -> Result<Vec<u8>, Box<dyn Error>> {
loop {
let packet = recv_packet(&mut self.raw_stream).await?;
if packet.packet_id != PACKET_APPLICATION_DATA {
self.packet_queue.push(packet);
continue;
}
let app_data: EpfApplicationData = rmp_serde::from_slice(&packet.packet_data)?;
let nonce = XNonce::from_slice(&app_data.nonce);
let payload = Payload {
msg: &app_data.encrypted_application_data,
aad: &self.aad,
};
let plaintext = match self.cipher.decrypt(nonce, payload) {
Ok(p) => p,
Err(_) => {
return Err(io::Error::new(io::ErrorKind::Other, "Decryption error").into())
}
};
return Ok(plaintext);
}
}
}
///// SERVER /////
pub struct EpfServerUpgraded<T: AsyncWriteExt + AsyncReadExt> {
inner: T,
state: EpfServerState,
client_random: [u8; 24],
server_random: [u8; 16],
client_cert: Option<EPFCertificate>,
packet_queue: Vec<EpfMessage>,
cipher: Option<XChaCha20Poly1305>,
cert: EPFCertificate,
private_key: EpfPrivateKey,
public_key: EpfPublicKey,
}
#[async_trait]
pub trait EpfServerUpgradable {
async fn upgrade(
self,
cert: EPFCertificate,
private_key: EpfPrivateKey,
) -> EpfServerUpgraded<Self>
where
Self: Sized + AsyncWriteExt + AsyncReadExt + Send;
}
#[async_trait]
impl<T: ?Sized> EpfServerUpgradable for T
where
T: AsyncWriteExt + AsyncReadExt + Send,
{
async fn upgrade(
self,
cert: EPFCertificate,
private_key: EpfPrivateKey,
) -> EpfServerUpgraded<Self>
where
Self: Sized + AsyncWriteExt + AsyncReadExt + Send,
{
EpfServerUpgraded {
inner: self,
state: EpfServerState::WaitingForClientHello,
server_random: OsRng.gen(),
client_random: [0u8; 24],
cert,
client_cert: None,
packet_queue: vec![],
cipher: None,
private_key: private_key.clone(),
public_key: private_key.verifying_key(),
}
}
}
#[async_trait]
pub trait EpfServerHandshaker<S: AsyncWriteExt + AsyncReadExt + Unpin> {
async fn handshake(&mut self, cert_pool: EpfCaPool) -> Result<(), Box<dyn Error>>;
async fn upgrade(self) -> EpfServerStream<S>
where
Self: Sized;
}
#[async_trait]
impl<T: AsyncWriteExt + AsyncReadExt + Send + Unpin> EpfServerHandshaker<T>
for EpfServerUpgraded<T>
{
async fn handshake(&mut self, cert_pool: EpfCaPool) -> Result<(), Box<dyn Error>> {
match self.state {
EpfServerState::WaitingForClientHello => (),
_ => return Err(EpfHandshakeError::AlreadyTunnelled.into()),
}
let client_public_key;
// Step 1: Wait for Client Hello
loop {
let packet = recv_packet(&mut self.inner).await?;
if packet.packet_id != PACKET_CLIENT_HELLO {
self.packet_queue.push(packet);
continue;
}
trace!("got client hello");
let client_hello: EpfClientHello = rmp_serde::from_slice(&packet.packet_data)?;
self.client_random = client_hello.client_random;
if client_hello.protocol_version != PROTOCOL_VERSION {
return Err(EpfHandshakeError::UnsupportedProtocolVersion(
client_hello.protocol_version as usize,
)
.into());
}
self.client_cert = client_hello.client_certificate;
client_public_key = client_hello.client_x25519_public_key;
trace!("exiting loop");
break;
}
// Step 2: Validate Client Certificate (if present)
if let Some(client_cert) = &self.client_cert {
let cert_valid = client_cert.verify(&cert_pool);
if let Err(e) = cert_valid {
return Err(EpfHandshakeError::InvalidCertificate(e).into());
}
if let Ok(false) = cert_valid {
return Err(EpfHandshakeError::UntrustedCertificate.into());
}
}
// Client Cert OK (if present)
trace!("client cert okay");
// Step 3: Send Server Hello
self.inner
.write_all(&encode_packet(
PACKET_SERVER_HELLO,
&EpfServerHello {
protocol_version: PROTOCOL_VERSION,
server_certificate: self.cert.clone(),
server_random: self.server_random,
server_x25519_public_key: PublicKey::from(&StaticSecret::from(
self.private_key.to_bytes(),
))
.to_bytes(),
},
)?)
.await?;
self.inner.flush().await?;
trace!("sent server hello");
self.state = EpfServerState::WaitingForFinished;
// Step 4: Build the cipher
let private_key = StaticSecret::from(self.private_key.to_bytes());
let their_public_key = PublicKey::from(client_public_key);
assert_ne!(
their_public_key.to_bytes(),
PublicKey::from(&private_key).to_bytes()
);
danger_trace!(
"pr: {}, their pub: {}, my pub: {}",
hex::encode(self.private_key.to_bytes()),
hex::encode(client_public_key),
hex::encode(self.private_key.verifying_key().to_bytes())
);
let shared_key = private_key.diffie_hellman(&their_public_key).to_bytes();
trace!("client public key: {:x?}", client_public_key);
danger_trace!("shared key: {}", hex::encode(shared_key));
let cc20p1305_key = Key::from(shared_key);
let cc20p1305 = XChaCha20Poly1305::new(&cc20p1305_key);
self.cipher = Some(cc20p1305);
let payload = Payload {
msg: &[0x42],
aad: &self.server_random,
};
let nonce = XNonce::from_slice(&self.client_random);
loop {
let packet = recv_packet(&mut self.inner).await?;
if packet.packet_id != PACKET_FINISHED {
self.packet_queue.push(packet);
continue;
}
let packet_finished: EpfFinished = rmp_serde::from_slice(&packet.packet_data)?;
let payload = Payload {
msg: &packet_finished.encrypted_0x42,
aad: &self.server_random,
};
trace!("trying to decrypt 0x42");
danger_trace!(
"ciphertext: {:?}, nonce: {:?}, aad: {:?}",
payload.msg,
nonce,
payload.aad
);
let hopefully_0x42 = match self.cipher.as_ref().unwrap().decrypt(nonce, payload) {
Ok(d) => d,
Err(_) => {
return Err(EpfHandshakeError::EncryptionError.into());
}
};
if hopefully_0x42 != vec![0x42] {
return Err(EpfHandshakeError::MissingKeyProof.into());
}
break;
}
let encrypted_0x42 = match self.cipher.as_ref().unwrap().encrypt(nonce, payload) {
Ok(d) => d,
Err(_) => return Err(EpfHandshakeError::EncryptionError.into()),
};
self.inner
.write_all(&encode_packet(
PACKET_FINISHED,
&EpfFinished {
protocol_version: PROTOCOL_VERSION,
encrypted_0x42,
},
)?)
.await?;
self.inner.flush().await?;
self.state = EpfServerState::WaitingForFinished;
self.state = EpfServerState::Transport;
Ok(())
}
async fn upgrade(self) -> EpfServerStream<T>
where
Self: Sized,
{
EpfServerStream {
aad: self.server_random,
server_cert: self.cert,
packet_queue: self.packet_queue,
client_cert: self.client_cert,
cipher: self.cipher.unwrap(),
private_key: self.private_key,
public_key: self.public_key,
raw_stream: self.inner,
}
}
}
#[allow(dead_code)]
pub struct EpfServerStream<S: AsyncReadExt + AsyncWriteExt + Unpin> {
raw_stream: S,
aad: [u8; 16],
client_cert: Option<EPFCertificate>,
packet_queue: Vec<EpfMessage>,
server_cert: EPFCertificate,
cipher: XChaCha20Poly1305,
private_key: EpfPrivateKey,
public_key: EpfPublicKey,
}
#[async_trait]
impl<S: AsyncReadExt + AsyncWriteExt + Unpin + Send> EpfStreamOps for EpfServerStream<S> {
async fn write(&mut self, data: &[u8]) -> Result<(), Box<dyn Error>> {
let nonce = XChaCha20Poly1305::generate_nonce(OsRng);
let payload = Payload {
msg: data,
aad: &self.aad,
};
let ciphertext = match self.cipher.encrypt(&nonce, payload) {
Ok(c) => c,
Err(_) => return Err(io::Error::new(io::ErrorKind::Other, "Encryption error").into()),
};
let application_data = EpfApplicationData {
protocol_version: PROTOCOL_VERSION,
encrypted_application_data: ciphertext,
nonce: nonce.try_into().unwrap(),
};
let packet = encode_packet(PACKET_APPLICATION_DATA, &application_data)?;
self.raw_stream.write_all(&packet).await?;
self.raw_stream.flush().await?;
Ok(())
}
async fn read(&mut self) -> Result<Vec<u8>, Box<dyn Error>> {
loop {
let packet = recv_packet(&mut self.raw_stream).await?;
if packet.packet_id != PACKET_APPLICATION_DATA {
self.packet_queue.push(packet);
continue;
}
let app_data: EpfApplicationData = rmp_serde::from_slice(&packet.packet_data)?;
let nonce = XNonce::from_slice(&app_data.nonce);
let payload = Payload {
msg: &app_data.encrypted_application_data,
aad: &self.aad,
};
let plaintext = match self.cipher.decrypt(nonce, payload) {
Ok(p) => p,
Err(_) => {
return Err(io::Error::new(io::ErrorKind::Other, "Decryption error").into())
}
};
return Ok(plaintext);
}
}
}
#[cfg(test)]
mod tests {
use crate::ca_pool::{EpfCaPool, EpfCaPoolOps};
use crate::handshake_stream::{
ClientAuthentication, EpfClientHandshaker, EpfClientUpgradable, EpfClientUpgraded,
EpfServerHandshaker, EpfServerUpgradable, EpfServerUpgraded, EpfStreamOps,
};
use crate::pki::{EPFCertificate, EPFCertificateDetails, EpfPkiCertificateOps};
use ed25519_dalek::SigningKey;
use log::{debug, trace};
use serial_test::serial;
use std::net::SocketAddr;
use std::str::FromStr;
use std::time::{SystemTime, UNIX_EPOCH};
use tokio::join;
use tokio::net::{TcpListener, TcpSocket, TcpStream};
use x25519_dalek::{PublicKey, StaticSecret};
#[tokio::test]
#[serial]
pub async fn stream_test() {
//simple_logger::init().unwrap();
let tcp_listener = TcpListener::bind("0.0.0.0:36116").await.unwrap();
let tcp_client_future = TcpSocket::new_v4()
.unwrap()
.connect(SocketAddr::from_str("127.0.0.1:36116").unwrap());
let (a, b) = join![tcp_listener.accept(), tcp_client_future];
let (s, _) = a.unwrap();
let c = b.unwrap();
let server_private_key = SigningKey::from([1u8; 32]);
let client_private_key = SigningKey::from([2u8; 32]);
let mut server_cert = EPFCertificate {
details: EPFCertificateDetails {
name: "Testing Server Certificate".to_string(),
not_before: 0,
not_after: SystemTime::now()
.duration_since(UNIX_EPOCH)
.unwrap()
.as_secs()
+ 30,
public_key: server_private_key.verifying_key().to_bytes(),
issuer_public_key: [0u8; 32],
claims: Default::default(),
},
fingerprint: "".to_string(),
signature: [0u8; 64],
};
server_cert.sign(&server_private_key).unwrap();
debug!(
"{}",
hex::encode(server_private_key.verifying_key().to_bytes())
);
let mut client_cert = EPFCertificate {
details: EPFCertificateDetails {
name: "Testing Client Certificate".to_string(),
not_before: 0,
not_after: SystemTime::now()
.duration_since(UNIX_EPOCH)
.unwrap()
.as_secs()
+ 30,
public_key: client_private_key.verifying_key().to_bytes(),
issuer_public_key: [0u8; 32],
claims: Default::default(),
},
fingerprint: "".to_string(),
signature: [0u8; 64],
};
client_cert.sign(&client_private_key).unwrap();
let mut cert_pool = EpfCaPool::new();
let mut cert_pool_2 = EpfCaPool::new();
cert_pool.insert(&server_cert);
cert_pool.insert(&client_cert);
cert_pool_2.insert(&client_cert);
cert_pool_2.insert(&server_cert);
let mut c: EpfClientUpgraded<TcpStream> = EpfClientUpgradable::upgrade(
c,
ClientAuthentication::Cert(Box::new(client_cert), Box::new(client_private_key)),
)
.await;
let mut s: EpfServerUpgraded<TcpStream> =
EpfServerUpgradable::upgrade(s, server_cert, server_private_key).await;
let server_handshake_accept_task = tokio::spawn(async move {
trace!("starting server handshake listener");
s.handshake(cert_pool_2).await.unwrap();
let mut upgraded = s.upgrade().await;
assert_eq!(upgraded.read().await.unwrap(), vec![0x42, 0x42]);
upgraded.write(&[0x42, 0x42]).await.unwrap();
});
let client_handshake_send_task = tokio::spawn(async move {
trace!("starting client handshake sender");
c.handshake(cert_pool).await.unwrap();
let mut upgraded = EpfClientHandshaker::upgrade(c).await;
upgraded.write(&[0x42, 0x42]).await.unwrap();
assert_eq!(upgraded.read().await.unwrap(), vec![0x42, 0x42]);
});
let (a, b) = join![server_handshake_accept_task, client_handshake_send_task];
a.unwrap();
b.unwrap();
}
#[tokio::test]
#[serial]
pub async fn stream_test_ephemeral() {
//simple_logger::init().unwrap();
let tcp_listener = TcpListener::bind("0.0.0.0:36117").await.unwrap();
let tcp_client_future = TcpSocket::new_v4()
.unwrap()
.connect(SocketAddr::from_str("127.0.0.1:36117").unwrap());
let (a, b) = join![tcp_listener.accept(), tcp_client_future];
let (s, _) = a.unwrap();
let c = b.unwrap();
let server_private_key = SigningKey::from([1u8; 32]);
let mut server_cert = EPFCertificate {
details: EPFCertificateDetails {
name: "Testing Server Certificate".to_string(),
not_before: 0,
not_after: SystemTime::now()
.duration_since(UNIX_EPOCH)
.unwrap()
.as_secs()
+ 30,
public_key: server_private_key.verifying_key().to_bytes(),
issuer_public_key: [0u8; 32],
claims: Default::default(),
},
fingerprint: "".to_string(),
signature: [0u8; 64],
};
server_cert.sign(&server_private_key).unwrap();
debug!(
"{}",
hex::encode(server_private_key.verifying_key().to_bytes())
);
let mut cert_pool = EpfCaPool::new();
let mut cert_pool_2 = EpfCaPool::new();
cert_pool.insert(&server_cert);
cert_pool_2.insert(&server_cert);
let mut c: EpfClientUpgraded<TcpStream> =
EpfClientUpgradable::upgrade(c, ClientAuthentication::Ephemeral).await;
let mut s: EpfServerUpgraded<TcpStream> =
EpfServerUpgradable::upgrade(s, server_cert, server_private_key).await;
let server_handshake_accept_task = tokio::spawn(async move {
trace!("starting server handshake listener");
s.handshake(cert_pool_2).await.unwrap();
let mut upgraded = s.upgrade().await;
assert_eq!(upgraded.read().await.unwrap(), vec![0x42, 0x42])
});
let client_handshake_send_task = tokio::spawn(async move {
trace!("starting client handshake sender");
c.handshake(cert_pool).await.unwrap();
let mut upgraded = EpfClientHandshaker::upgrade(c).await;
upgraded.write(&[0x42, 0x42]).await.unwrap();
});
let (a, b) = join![server_handshake_accept_task, client_handshake_send_task];
a.unwrap();
b.unwrap();
}
#[test]
pub fn x25519_sanity_check() {
let bob_key = StaticSecret::from([1u8; 32]);
let bob_pub = PublicKey::from(&bob_key);
let alice_key = StaticSecret::from([2u8; 32]);
let alice_pub = PublicKey::from(&alice_key);
let ss_1 = bob_key.diffie_hellman(&alice_pub);
let ss_2 = alice_key.diffie_hellman(&bob_pub);
assert_eq!(ss_1.to_bytes(), ss_2.to_bytes());
println!(
"SS: {}, B_p: {}, A_p: {}",
hex::encode(ss_1.to_bytes()),
hex::encode(bob_pub.to_bytes()),
hex::encode(alice_pub.to_bytes())
);
}
}

View File

@ -1,8 +1,4 @@
pub mod ca_pool;
pub mod error;
pub mod handshake_stream;
pub mod pki;
pub mod protocol;
pub mod util;
#[macro_use]
pub mod log;
pub mod protocol;

View File

@ -1,17 +0,0 @@
#[macro_export]
macro_rules! danger_trace {
// trace!(target: "my_target", key1 = 42, key2 = true; "a {} event", "log")
// trace!(target: "my_target", "a {} event", "log")
(target: $target:expr, $($arg:tt)+) => {
if std::env::var("E3PF_SUPER_DANGEROUS_VERY_VERBOSE_DEBUGGING_LOGGING") == Ok("enabled".to_string()) && cfg!(debug_assertions) {
log::trace!(target: $target, $($arg)+)
}
};
// trace!("a {} event", "log")
($($arg:tt)+) => {
if std::env::var("E3PF_SUPER_DANGEROUS_VERY_VERBOSE_DEBUGGING_LOGGING") == Ok("enabled".to_string()) && cfg!(debug_assertions) {
log::trace!($($arg)+)
}
}
}

View File

@ -1,5 +1,5 @@
use crate::ca_pool::{EpfCaPool, EpfCaPoolOps};
use crate::util::{pretty_print_date, u64_to_st, verifying_key};
use crate::util::{pretty_print_date, u64_to_st};
use ed25519_dalek::{Signature, SignatureError, Signer, SigningKey, Verifier, VerifyingKey};
use pem::Pem;
use serde::{Deserialize, Serialize};
@ -15,8 +15,8 @@ pub const EPFPKI_SIGNATURE_LENGTH: usize = 64;
pub const EPFPKI_SELF_SIGNED_CERTIFICATE: &str =
"0000000000000000000000000000000000000000000000000000000000000000";
pub type EpfPublicKey = VerifyingKey;
pub type EpfPrivateKey = SigningKey;
pub type EpfPublicKey = [u8; 32];
pub type EpfPrivateKey = [u8; 64];
#[derive(Serialize, Deserialize, PartialEq, Debug, Eq, Clone)]
pub struct EPFCertificate {
@ -43,8 +43,8 @@ pub struct EPFCertificateDetails {
pub trait EpfPkiSerializable {
const PEM_BANNER: &'static str;
fn as_bytes_pki(&self) -> Result<Vec<u8>, rmp_serde::encode::Error>;
fn from_bytes_pki(bytes: &[u8]) -> Result<Self, rmp_serde::decode::Error>
fn as_bytes(&self) -> Result<Vec<u8>, rmp_serde::encode::Error>;
fn from_bytes(bytes: &[u8]) -> Result<Self, rmp_serde::decode::Error>
where
Self: Sized;
@ -62,6 +62,10 @@ pub fn fingerprint(cert: &EPFCertificateDetails) -> Result<String, rmp_serde::en
Ok(hex::encode(hash))
}
fn load_signing_key(b: &[u8; 64]) -> Result<SigningKey, SignatureError> {
SigningKey::from_keypair_bytes(b)
}
#[derive(Debug)]
pub enum EpfPkiCertificateValidationError {
NoLongerValid { expired_at: SystemTime },
@ -128,11 +132,12 @@ impl EpfPkiCertificateOps for EPFCertificate {
fn sign(&mut self, private_key: &EpfPrivateKey) -> Result<(), Box<dyn Error>> {
self.recalculate_fingerprint()?;
self.details.issuer_public_key = *private_key.verifying_key().as_bytes();
let signing_key = load_signing_key(private_key)?;
self.details.issuer_public_key = *signing_key.verifying_key().as_bytes();
let cert_data_bytes = rmp_serde::to_vec(&self.details)?;
let signature = private_key.sign(&cert_data_bytes).to_vec();
let signature = signing_key.sign(&cert_data_bytes).to_vec();
self.signature = signature.try_into().unwrap();
@ -177,19 +182,26 @@ impl EpfPkiCertificateOps for EPFCertificate {
let is_self_signed;
let public_key = if self.details.issuer_public_key == self.details.public_key {
println!(
"{}: {:?} {:?}",
self.details.name, self.details.issuer_public_key, self.details.public_key
);
let verifying_key = if self.details.issuer_public_key == self.details.public_key {
// self-signed certificate
is_self_signed = true;
verifying_key(&self.details.public_key)
VerifyingKey::from_bytes(&self.details.public_key)
.map_err(|e| EpfPkiCertificateValidationError::InvalidSignature { e })?
} else {
is_self_signed = false;
verifying_key(&self.details.issuer_public_key)
VerifyingKey::from_bytes(&self.details.issuer_public_key)
.map_err(|e| EpfPkiCertificateValidationError::InvalidSignature { e })?
};
let cert_data_bytes = rmp_serde::to_vec(&self.details)
.map_err(|e| EpfPkiCertificateValidationError::InvalidCertificateData { e })?;
public_key
verifying_key
.verify(&cert_data_bytes, &signature)
.map_err(|e| EpfPkiCertificateValidationError::InvalidSignature { e })?;
@ -197,12 +209,12 @@ impl EpfPkiCertificateOps for EPFCertificate {
// Is the signer trusted?
let ca_cert = if is_self_signed {
if let Some(cert) = ca_pool.get_ca(&verifying_key(&self.details.public_key)) {
if let Some(cert) = ca_pool.get_ca(&self.details.public_key) {
cert
} else {
return Ok(false);
}
} else if let Some(cert) = ca_pool.get_ca(&verifying_key(&self.details.issuer_public_key)) {
} else if let Some(cert) = ca_pool.get_ca(&self.details.issuer_public_key) {
cert
} else {
return Ok(false);
@ -250,7 +262,7 @@ impl Display for EPFCertificate {
)?;
writeln!(
f,
"\t\tIssuer Public Key: {}",
"\t\tIssuer Fingerprint: {}",
hex::encode(self.details.issuer_public_key)
)?;
writeln!(f, "\t}}")?;
@ -263,20 +275,18 @@ impl Display for EPFCertificate {
impl EpfPkiSerializable for EPFCertificate {
const PEM_BANNER: &'static str = "EPF CERTIFICATE";
fn as_bytes_pki(&self) -> Result<Vec<u8>, rmp_serde::encode::Error> {
fn as_bytes(&self) -> Result<Vec<u8>, rmp_serde::encode::Error> {
rmp_serde::to_vec(self)
}
fn from_bytes_pki(bytes: &[u8]) -> Result<Self, rmp_serde::decode::Error> {
fn from_bytes(bytes: &[u8]) -> Result<Self, rmp_serde::decode::Error> {
rmp_serde::from_slice(bytes)
}
fn as_pem(&self) -> Result<Vec<u8>, Box<dyn Error>> {
Ok(
pem::encode(&Pem::new(Self::PEM_BANNER, self.as_bytes_pki()?))
.as_bytes()
.to_vec(),
)
Ok(pem::encode(&Pem::new(Self::PEM_BANNER, self.as_bytes()?))
.as_bytes()
.to_vec())
}
fn from_pem(bytes: &[u8]) -> Result<Self, Box<dyn Error>>
@ -287,29 +297,27 @@ impl EpfPkiSerializable for EPFCertificate {
if pem.tag() != Self::PEM_BANNER {
return Err("Not a certificate".into());
}
Ok(Self::from_bytes_pki(pem.contents())?)
Ok(Self::from_bytes(pem.contents())?)
}
}
impl EpfPkiSerializable for EpfPublicKey {
const PEM_BANNER: &'static str = "EPF PUBLIC KEY";
fn as_bytes_pki(&self) -> Result<Vec<u8>, rmp_serde::encode::Error> {
Ok(self.as_bytes().to_vec())
fn as_bytes(&self) -> Result<Vec<u8>, rmp_serde::encode::Error> {
Ok(self.to_vec())
}
fn from_bytes_pki(bytes: &[u8]) -> Result<Self, rmp_serde::decode::Error> {
fn from_bytes(bytes: &[u8]) -> Result<Self, rmp_serde::decode::Error> {
bytes
.try_into()
.map_err(|_| rmp_serde::decode::Error::LengthMismatch(bytes.len() as u32))
}
fn as_pem(&self) -> Result<Vec<u8>, Box<dyn Error>> {
Ok(
pem::encode(&Pem::new(Self::PEM_BANNER, self.as_bytes().to_vec()))
.as_bytes()
.to_vec(),
)
Ok(pem::encode(&Pem::new(Self::PEM_BANNER, self.as_bytes()?))
.as_bytes()
.to_vec())
}
fn from_pem(bytes: &[u8]) -> Result<Self, Box<dyn Error>>
@ -320,33 +328,27 @@ impl EpfPkiSerializable for EpfPublicKey {
if pem.tag() != Self::PEM_BANNER {
return Err("Not a public key".into());
}
Ok(Self::from_bytes(
pem.contents()
.try_into()
.map_err(|_| -> Box<dyn Error> { "Wrong size".into() })?,
)?)
Ok(Self::from_bytes(pem.contents())?)
}
}
impl EpfPkiSerializable for EpfPrivateKey {
const PEM_BANNER: &'static str = "EPF PRIVATE KEY";
fn as_bytes_pki(&self) -> Result<Vec<u8>, rmp_serde::encode::Error> {
Ok(self.to_keypair_bytes().to_vec())
fn as_bytes(&self) -> Result<Vec<u8>, rmp_serde::encode::Error> {
Ok(self.to_vec())
}
fn from_bytes_pki(bytes: &[u8]) -> Result<Self, rmp_serde::decode::Error> {
fn from_bytes(bytes: &[u8]) -> Result<Self, rmp_serde::decode::Error> {
bytes
.try_into()
.map_err(|_| rmp_serde::decode::Error::LengthMismatch(bytes.len() as u32))
}
fn as_pem(&self) -> Result<Vec<u8>, Box<dyn Error>> {
Ok(
pem::encode(&Pem::new(Self::PEM_BANNER, self.as_bytes_pki()?))
.as_bytes()
.to_vec(),
)
Ok(pem::encode(&Pem::new(Self::PEM_BANNER, self.as_bytes()?))
.as_bytes()
.to_vec())
}
fn from_pem(bytes: &[u8]) -> Result<Self, Box<dyn Error>>
@ -357,11 +359,7 @@ impl EpfPkiSerializable for EpfPrivateKey {
if pem.tag() != Self::PEM_BANNER {
return Err("Incorrect PEM tag".into());
}
Ok(Self::from_keypair_bytes(
pem.contents()
.try_into()
.map_err(|_| -> Box<dyn Error> { "Wrong size".into() })?,
)?)
Ok(Self::from_bytes(pem.contents())?)
}
}
@ -373,24 +371,19 @@ mod tests {
EpfPkiCertificateValidationError, EpfPkiSerializable, EpfPrivateKey, EpfPublicKey,
EPFPKI_PUBLIC_KEY_LENGTH, EPFPKI_SIGNATURE_LENGTH,
};
use crate::util::{signing_key, verifying_key};
use ed25519_dalek::{SignatureError, SigningKey};
use hex_literal::hex;
use rand::rngs::OsRng;
use std::collections::HashMap;
use std::time::{SystemTime, UNIX_EPOCH};
#[test]
pub fn certificate_serialization() {
assert_eq!(cert().as_bytes_pki().unwrap(), cert_bytes())
assert_eq!(cert().as_bytes().unwrap(), cert_bytes())
}
#[test]
pub fn certificate_deserialization() {
assert_eq!(
EPFCertificate::from_bytes_pki(&cert_bytes()).unwrap(),
cert()
)
assert_eq!(EPFCertificate::from_bytes(&cert_bytes()).unwrap(), cert())
}
#[test]
@ -411,33 +404,24 @@ mod tests {
#[test]
pub fn pubkey_serialization() {
assert_eq!(
(verifying_key(&[0u8; 32])).as_bytes_pki().unwrap(),
[0u8; 32].to_vec()
)
assert_eq!(([0u8; 32]).as_bytes().unwrap(), [0u8; 32].to_vec())
}
#[test]
pub fn pubkey_deserialization() {
assert_eq!(
EpfPublicKey::from_bytes(&[0u8; 32]).unwrap(),
verifying_key(&[0u8; 32])
)
assert_eq!(EpfPublicKey::from_bytes(&[0u8; 32]).unwrap(), [0u8; 32])
}
#[test]
pub fn pubkey_serialization_pem() {
assert_eq!(
(verifying_key(&[0u8; 32])).as_pem().unwrap(),
null_public_key_pem()
)
assert_eq!(([0u8; 32]).as_pem().unwrap(), null_public_key_pem())
}
#[test]
pub fn pubkey_deserialization_pem() {
assert_eq!(
EpfPublicKey::from_pem(&null_public_key_pem()).unwrap(),
verifying_key(&[0u8; 32])
[0u8; 32]
)
}
@ -449,42 +433,24 @@ mod tests {
#[test]
pub fn privkey_serialization() {
let priv_key_data = hex!("00000000000000000000000000000000000000000000000000000000000000003B6A27BCCEB6A42D62A3A8D02A6F0D73653215771DE243A63AC048A18B59DA29");
assert_eq!(
(signing_key(&priv_key_data)).as_bytes_pki().unwrap(),
priv_key_data.to_vec()
)
assert_eq!(([0u8; 64]).as_bytes().unwrap(), [0u8; 64].to_vec())
}
#[test]
pub fn privkey_deserialization() {
let priv_key = EpfPrivateKey::generate(&mut OsRng);
assert_eq!(
priv_key.to_keypair_bytes(),
signing_key(&priv_key.to_keypair_bytes()).to_keypair_bytes()
)
assert_eq!(EpfPrivateKey::from_bytes(&[0u8; 64]).unwrap(), [0u8; 64])
}
#[test]
pub fn privkey_serialization_pem() {
let priv_key_data = hex!("00000000000000000000000000000000000000000000000000000000000000003B6A27BCCEB6A42D62A3A8D02A6F0D73653215771DE243A63AC048A18B59DA29");
assert_eq!(
(signing_key(&priv_key_data)).as_pem().unwrap(),
null_private_key_pem()
)
assert_eq!(([0u8; 64]).as_pem().unwrap(), null_private_key_pem())
}
#[test]
pub fn privkey_deserialization_pem() {
let priv_key_data = hex!("00000000000000000000000000000000000000000000000000000000000000003B6A27BCCEB6A42D62A3A8D02A6F0D73653215771DE243A63AC048A18B59DA29");
assert_eq!(
EpfPrivateKey::from_pem(&null_private_key_pem())
.unwrap()
.to_keypair_bytes(),
signing_key(&priv_key_data).to_keypair_bytes()
EpfPrivateKey::from_pem(&null_private_key_pem()).unwrap(),
[0u8; 64]
)
}
@ -492,10 +458,8 @@ mod tests {
#[should_panic]
pub fn privkey_deserialization_pem_wrong_tag() {
assert_eq!(
EpfPrivateKey::from_pem(&null_public_key_pem())
.unwrap()
.to_keypair_bytes(),
signing_key(&[0u8; 64]).to_keypair_bytes()
EpfPrivateKey::from_pem(&null_public_key_pem()).unwrap(),
[0u8; 64]
)
}
@ -549,7 +513,7 @@ mod tests {
assert!(ca_cert.verify(&ca_pool).is_err());
ca_cert.sign(&private_key).unwrap();
ca_cert.sign(&private_key.to_keypair_bytes()).unwrap();
assert!(!ca_cert.verify(&ca_pool).unwrap());
@ -581,7 +545,7 @@ mod tests {
};
assert!(not_ca_cert.verify(&ca_pool).is_err());
not_ca_cert.sign(&private_key).unwrap();
not_ca_cert.sign(&private_key.to_keypair_bytes()).unwrap();
assert!(not_ca_cert.verify(&ca_pool).unwrap());
}
@ -615,84 +579,6 @@ mod tests {
))
}
#[test]
pub fn certificate_verification_fingerprint_does_not_match() {
let private_key = SigningKey::generate(&mut OsRng);
let public_key = private_key.verifying_key();
let mut fingerprint_does_not_match_cert = EPFCertificate {
details: EPFCertificateDetails {
name: "Testing Certificate - Fingerprint Non Matching".to_string(),
not_before: SystemTime::now()
.duration_since(UNIX_EPOCH)
.unwrap()
.as_secs()
- 20,
not_after: SystemTime::now()
.duration_since(UNIX_EPOCH)
.unwrap()
.as_secs()
+ 30,
public_key: [0u8; 32],
issuer_public_key: *public_key.as_bytes(),
claims: Default::default(),
},
fingerprint: "".to_string(),
signature: [0u8; EPFPKI_SIGNATURE_LENGTH],
};
fingerprint_does_not_match_cert.sign(&private_key).unwrap();
fingerprint_does_not_match_cert.fingerprint = "0".to_string();
let ca_pool = EpfCaPool::new();
assert!(matches!(
fingerprint_does_not_match_cert
.verify(&ca_pool)
.unwrap_err(),
EpfPkiCertificateValidationError::FingerprintDoesNotMatch { .. }
));
}
#[test]
pub fn certificate_verification_invalid_signature() {
let private_key = SigningKey::generate(&mut OsRng);
let public_key = private_key.verifying_key();
let mut fingerprint_does_not_match_cert = EPFCertificate {
details: EPFCertificateDetails {
name: "Testing Certificate - Fingerprint Non Matching".to_string(),
not_before: SystemTime::now()
.duration_since(UNIX_EPOCH)
.unwrap()
.as_secs()
- 20,
not_after: SystemTime::now()
.duration_since(UNIX_EPOCH)
.unwrap()
.as_secs()
+ 30,
public_key: [0u8; 32],
issuer_public_key: *public_key.as_bytes(),
claims: Default::default(),
},
fingerprint: "".to_string(),
signature: [0u8; EPFPKI_SIGNATURE_LENGTH],
};
fingerprint_does_not_match_cert.sign(&private_key).unwrap();
fingerprint_does_not_match_cert.signature = [0u8; 64];
let ca_pool = EpfCaPool::new();
assert!(matches!(
fingerprint_does_not_match_cert
.verify(&ca_pool)
.unwrap_err(),
EpfPkiCertificateValidationError::InvalidSignature { .. }
));
}
#[test]
pub fn certificate_verification_not_valid_yet() {
let not_yet_valid_cert = EPFCertificate {
@ -749,7 +635,9 @@ mod tests {
fingerprint: "".to_string(),
signature: [0u8; EPFPKI_SIGNATURE_LENGTH],
};
not_trusted_cert.sign(&private_key).unwrap();
not_trusted_cert
.sign(&private_key.to_keypair_bytes())
.unwrap();
let ca_pool = EpfCaPool::new();
@ -787,7 +675,7 @@ mod tests {
signature: [0u8; EPFPKI_SIGNATURE_LENGTH],
};
ca_cert.sign(&private_key).unwrap();
ca_cert.sign(&private_key.to_keypair_bytes()).unwrap();
ca_pool.insert(&ca_cert);
let mut not_ca_cert = EPFCertificate {
@ -812,7 +700,7 @@ mod tests {
};
assert!(not_ca_cert.verify(&ca_pool).is_err());
not_ca_cert.sign(&private_key).unwrap();
not_ca_cert.sign(&private_key.to_keypair_bytes()).unwrap();
assert!(matches!(
not_ca_cert.verify(&ca_pool).unwrap_err(),
EpfPkiCertificateValidationError::ExpiresAfterSigner
@ -850,7 +738,7 @@ mod tests {
signature: [0u8; EPFPKI_SIGNATURE_LENGTH],
};
ca_cert.sign(&private_key).unwrap();
ca_cert.sign(&private_key.to_keypair_bytes()).unwrap();
ca_pool.insert(&ca_cert);
let mut not_ca_cert = EPFCertificate {
@ -875,7 +763,7 @@ mod tests {
};
assert!(not_ca_cert.verify(&ca_pool).is_err());
not_ca_cert.sign(&private_key).unwrap();
not_ca_cert.sign(&private_key.to_keypair_bytes()).unwrap();
assert!(matches!(
not_ca_cert.verify(&ca_pool).unwrap_err(),
EpfPkiCertificateValidationError::ValidAfterSigner
@ -985,11 +873,11 @@ mod tests {
45, 45, 45, 45, 45, 66, 69, 71, 73, 78, 32, 69, 80, 70, 32, 80, 82, 73, 86, 65, 84, 69,
32, 75, 69, 89, 45, 45, 45, 45, 45, 13, 10, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65,
65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65,
65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 55, 97, 105, 101, 56, 122, 114, 97, 107, 76,
87, 75, 106, 113, 78, 65, 113, 98, 119, 49, 122, 13, 10, 90, 84, 73, 86, 100, 120, 51,
105, 81, 54, 89, 54, 119, 69, 105, 104, 105, 49, 110, 97, 75, 81, 61, 61, 13, 10, 45,
45, 45, 45, 45, 69, 78, 68, 32, 69, 80, 70, 32, 80, 82, 73, 86, 65, 84, 69, 32, 75, 69,
89, 45, 45, 45, 45, 45, 13, 10,
65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65,
65, 65, 65, 65, 65, 65, 65, 65, 65, 13, 10, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65,
65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 61, 61, 13, 10, 45, 45, 45, 45, 45, 69, 78,
68, 32, 69, 80, 70, 32, 80, 82, 73, 86, 65, 84, 69, 32, 75, 69, 89, 45, 45, 45, 45, 45,
13, 10,
]
}
}

View File

@ -1,95 +1,76 @@
use crate::pki::{EPFCertificate, EPFPKI_PUBLIC_KEY_LENGTH};
use serde::{Deserialize, Serialize};
use std::error::Error;
use tokio::io::AsyncReadExt;
use crate::pki::EPFCertificate;
pub const PROTOCOL_VERSION: u32 = 1;
#[derive(Serialize, Deserialize, Clone)]
#[derive(Serialize, Deserialize)]
pub struct EpfMessage {
pub packet_id: u32,
pub packet_data: Vec<u8>,
pub packet_data: Vec<u8>
}
pub const PACKET_CLIENT_HELLO: u32 = 1;
pub const CLIENT_HELLO: u32 = 1;
#[derive(Serialize, Deserialize)]
pub struct EpfClientHello {
pub protocol_version: u32,
pub client_random: [u8; 24],
pub client_certificate: Option<EPFCertificate>,
pub client_x25519_public_key: [u8; EPFPKI_PUBLIC_KEY_LENGTH],
pub client_random: [u8; 16]
}
pub const PACKET_SERVER_HELLO: u32 = 2;
pub const SERVER_HELLO: u32 = 2;
#[derive(Serialize, Deserialize)]
pub struct EpfServerHello {
pub protocol_version: u32,
pub server_certificate: EPFCertificate,
pub server_random: [u8; 16],
pub server_x25519_public_key: [u8; EPFPKI_PUBLIC_KEY_LENGTH],
pub server_random: [u8; 16]
}
pub const PACKET_FINISHED: u32 = 3;
pub const CLIENT_KEY_EXCHANGE: u32 = 3;
#[derive(Serialize, Deserialize)]
pub struct EpfClientKeyExchange {
pub protocol_version: u32,
pub encrypted_shared_secret: Vec<u8>
}
pub const FINISHED: u32 = 4;
#[derive(Serialize, Deserialize)]
pub struct EpfFinished {
pub protocol_version: u32,
pub encrypted_0x42: Vec<u8>,
pub encrypted_0x42: Vec<u8>
}
pub const PACKET_APPLICATION_DATA: u32 = 4;
pub const APPLICATION_DATA: u32 = 5;
#[derive(Serialize, Deserialize)]
pub struct EpfApplicationData {
pub protocol_version: u32,
pub encrypted_application_data: Vec<u8>,
pub nonce: [u8; 24],
pub application_data: Vec<u8>
}
#[derive(Clone)]
pub enum EpfClientState {
NotStarted,
WaitingForServerHello,
WaitingForFinished,
Transport,
Closed,
Closed
}
#[derive(Clone)]
pub enum EpfServerState {
WaitingForClientHello,
WaitingForClientKeyExchange,
WaitingForFinished,
Transport,
Closed,
Closed
}
pub fn encode_packet<T: Serialize>(
id: u32,
packet: &T,
) -> Result<Vec<u8>, rmp_serde::encode::Error> {
pub fn encode_packet<T: Serialize>(id: u32, packet: &T) -> Result<Vec<u8>, rmp_serde::encode::Error> {
let message_data = rmp_serde::to_vec(packet)?;
let message_wrapper = EpfMessage {
packet_id: id,
packet_data: message_data,
};
let mut packet_data = rmp_serde::to_vec(&message_wrapper)?;
let mut packet = (packet_data.len() as u64).to_le_bytes().to_vec();
// Packet: 8-byte little-endian length prefix, packet data
packet.append(&mut packet_data);
Ok(packet)
}
pub async fn recv_packet<C: AsyncReadExt + Unpin>(
stream: &mut C,
) -> Result<EpfMessage, Box<dyn Error>> {
let packet_length = stream.read_u64_le().await?;
let mut packet_data_buf = vec![0u8; packet_length as usize];
stream.read_exact(&mut packet_data_buf).await?;
let message: EpfMessage = rmp_serde::from_slice(&packet_data_buf)?;
Ok(message)
}
rmp_serde::to_vec(&message_wrapper)
}

View File

@ -1,5 +1,4 @@
use chrono::{DateTime, Utc};
use ed25519_dalek::{SigningKey, VerifyingKey};
use std::ops::Add;
use std::time::{Duration, SystemTime};
@ -11,10 +10,3 @@ pub fn pretty_print_date(date: &SystemTime) -> String {
pub fn u64_to_st(unix: u64) -> SystemTime {
SystemTime::UNIX_EPOCH.add(Duration::from_secs(unix))
}
pub fn verifying_key(key: &[u8; 32]) -> VerifyingKey {
VerifyingKey::from_bytes(key).unwrap()
}
pub fn signing_key(key: &[u8; 64]) -> SigningKey {
SigningKey::from_keypair_bytes(key).unwrap()
}

View File

@ -1,11 +0,0 @@
[package]
name = "ncpf"
version = "0.1.0"
edition = "2021"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
libepf = { version = "0.1.0", path = "../libepf" }
clap = { version = "4.2", features = ["derive", "cargo"] }
tokio = { version = "1.28.0", features = ["rt-multi-thread", "macros", "net", "io-std"] }

View File

@ -1,90 +0,0 @@
use clap::Parser;
use libepf::ca_pool::load_ca_pool;
use libepf::handshake_stream::{
ClientAuthentication, EpfClientHandshaker, EpfClientUpgradable, EpfStreamOps,
};
use std::error::Error;
use std::io;
use std::io::Write;
use std::net::{IpAddr, SocketAddr};
use tokio::io::AsyncReadExt;
use tokio::net::TcpSocket;
use tokio::select;
#[derive(Parser)]
#[command(author, version, about, long_about = None)]
pub struct Cli {
connect_ip: IpAddr,
connect_port: u16,
}
#[tokio::main]
async fn main() -> Result<(), Box<dyn Error>> {
let cli = Cli::parse();
let bind_addr = SocketAddr::new(cli.connect_ip, cli.connect_port);
let tcp_stream = TcpSocket::new_v4()?.connect(bind_addr).await?;
let ca_pool = load_ca_pool()?;
let mut handshake_client = tcp_stream.upgrade(ClientAuthentication::Ephemeral).await;
handshake_client.handshake(ca_pool).await?;
let mut client = handshake_client.upgrade().await;
let mut stdin = tokio::io::BufReader::new(tokio::io::stdin());
let mut input = [0u8; 32767];
loop {
select! {
packet_data = client.read() => {
match packet_data {
Ok(d) => std::io::stdout().write_all(&d).unwrap(),
Err(e) => {
match e.downcast_ref::<io::Error>() {
Some(e) if e.kind() == io::ErrorKind::UnexpectedEof => {
std::process::exit(0);
},
Some(_) | None => {
println!("{}", e);
std::process::exit(1);
}
}
}
}
},
stdin_data = stdin.read(&mut input) => {
match stdin_data {
Ok(amt) => {
match client.write(&input[..amt]).await {
Ok(_) => {
input = [0u8; 32767];
},
Err(e) => {
match e.downcast_ref::<io::Error>() {
Some(e) if e.kind() == io::ErrorKind::UnexpectedEof => {
std::process::exit(0);
},
Some(_) | None => {
println!("{}", e);
std::process::exit(1);
}
}
}
}
if amt == 0 {
// EOF
break;
}
},
Err(e) => {
println!("{}", e);
std::process::exit(1);
}
}
}
}
}
Ok(())
}

View File

@ -1,11 +0,0 @@
[package]
name = "netcatpf"
version = "0.1.0"
edition = "2021"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
libepf = { version = "0.1.0", path = "../libepf" }
clap = { version = "4.2", features = ["derive", "cargo"] }
tokio = { version = "1.28.0", features = ["rt-multi-thread", "macros", "net", "io-std"] }

View File

@ -1,102 +0,0 @@
use clap::Parser;
use libepf::ca_pool::load_ca_pool;
use libepf::handshake_stream::{EpfServerHandshaker, EpfServerUpgradable, EpfStreamOps};
use libepf::pki::{EPFCertificate, EpfPkiSerializable, EpfPrivateKey};
use std::error::Error;
use std::io::Write;
use std::net::{IpAddr, SocketAddr};
use std::path::PathBuf;
use std::{fs, io};
use tokio::io::AsyncReadExt;
use tokio::net::TcpListener;
use tokio::select;
#[derive(Parser)]
#[command(author, version, about, long_about = None)]
pub struct Cli {
bind_ip: IpAddr,
bind_port: u16,
certificate: PathBuf,
key: PathBuf,
}
#[tokio::main]
async fn main() -> Result<(), Box<dyn Error>> {
let cli = Cli::parse();
// load cert
let cert_data = fs::read(cli.certificate)?;
let cert = EPFCertificate::from_pem(&cert_data)?;
let private_key_data = fs::read(cli.key)?;
let private_key = EpfPrivateKey::from_pem(&private_key_data)?;
let bind_addr = SocketAddr::new(cli.bind_ip, cli.bind_port);
let listener = TcpListener::bind(bind_addr).await?;
// get client
let (tcp_stream, _) = listener.accept().await?;
let ca_pool = load_ca_pool()?;
let mut handshake_server = tcp_stream.upgrade(cert, private_key).await;
handshake_server.handshake(ca_pool).await?;
let mut client = handshake_server.upgrade().await;
let mut stdin = tokio::io::BufReader::new(tokio::io::stdin());
let mut input = [0u8; 32767];
loop {
select! {
packet_data = client.read() => {
match packet_data {
Ok(d) => std::io::stdout().write_all(&d).unwrap(),
Err(e) => {
match e.downcast_ref::<io::Error>() {
Some(e) if e.kind() == io::ErrorKind::UnexpectedEof => {
std::process::exit(0);
},
Some(_) | None => {
println!("{}", e);
std::process::exit(1);
}
}
}
}
},
stdin_data = stdin.read(&mut input) => {
match stdin_data {
Ok(amt) => {
match client.write(&input[..amt]).await {
Ok(_) => {
input = [0u8; 32767];
},
Err(e) => {
match e.downcast_ref::<io::Error>() {
Some(e) if e.kind() == io::ErrorKind::UnexpectedEof => {
std::process::exit(0);
},
Some(_) | None => {
println!("{}", e);
std::process::exit(1);
}
}
}
}
if amt == 0 {
// EOF
break;
}
},
Err(e) => {
println!("{}", e);
std::process::exit(1);
}
}
}
}
}
Ok(())
}

File diff suppressed because one or more lines are too long

View File

@ -1,901 +0,0 @@
--
-- lua-MessagePack : <https://fperrad.frama.io/lua-MessagePack/>
--
local r, jit = pcall(require, 'jit')
if not r then
jit = nil
end
local SIZEOF_NUMBER = string.pack and #string.pack('n', 0.0) or 8
local maxinteger
local mininteger
if not jit and _VERSION < 'Lua 5.3' then
-- Lua 5.1 & 5.2
local loadstring = loadstring or load
local luac = string.dump(loadstring "a = 1")
local header = { luac:byte(1, 12) }
SIZEOF_NUMBER = header[11]
end
local assert = assert
local error = error
local pairs = pairs
local pcall = pcall
local setmetatable = setmetatable
local tostring = tostring
local type = type
local char = require'string'.char
local format = require'string'.format
local floor = require'math'.floor
local tointeger = require'math'.tointeger or floor
local frexp = require'math'.frexp or require'mathx'.frexp
local ldexp = require'math'.ldexp or require'mathx'.ldexp
local huge = require'math'.huge
local tconcat = require'table'.concat
local _ENV = nil
local m = {}
--[[ debug only
local function hexadump (s)
return (s:gsub('.', function (c) return format('%02X ', c:byte()) end))
end
m.hexadump = hexadump
--]]
local function argerror (caller, narg, extramsg)
error("bad argument #" .. tostring(narg) .. " to "
.. caller .. " (" .. extramsg .. ")")
end
local function typeerror (caller, narg, arg, tname)
argerror(caller, narg, tname .. " expected, got " .. type(arg))
end
local function checktype (caller, narg, arg, tname)
if type(arg) ~= tname then
typeerror(caller, narg, arg, tname)
end
end
local packers = setmetatable({}, {
__index = function (t, k)
if k == 1 then return end -- allows ipairs
error("pack '" .. k .. "' is unimplemented")
end
})
m.packers = packers
packers['nil'] = function (buffer)
buffer[#buffer+1] = char(0xC0) -- nil
end
packers['boolean'] = function (buffer, bool)
if bool then
buffer[#buffer+1] = char(0xC3) -- true
else
buffer[#buffer+1] = char(0xC2) -- false
end
end
packers['string_compat'] = function (buffer, str)
local n = #str
if n <= 0x1F then
buffer[#buffer+1] = char(0xA0 + n) -- fixstr
elseif n <= 0xFFFF then
buffer[#buffer+1] = char(0xDA, -- str16
floor(n / 0x100),
n % 0x100)
elseif n <= 4294967295.0 then
buffer[#buffer+1] = char(0xDB, -- str32
floor(n / 0x1000000),
floor(n / 0x10000) % 0x100,
floor(n / 0x100) % 0x100,
n % 0x100)
else
error"overflow in pack 'string_compat'"
end
buffer[#buffer+1] = str
end
packers['_string'] = function (buffer, str)
local n = #str
if n <= 0x1F then
buffer[#buffer+1] = char(0xA0 + n) -- fixstr
elseif n <= 0xFF then
buffer[#buffer+1] = char(0xD9, -- str8
n)
elseif n <= 0xFFFF then
buffer[#buffer+1] = char(0xDA, -- str16
floor(n / 0x100),
n % 0x100)
elseif n <= 4294967295.0 then
buffer[#buffer+1] = char(0xDB, -- str32
floor(n / 0x1000000),
floor(n / 0x10000) % 0x100,
floor(n / 0x100) % 0x100,
n % 0x100)
else
error"overflow in pack 'string'"
end
buffer[#buffer+1] = str
end
packers['binary'] = function (buffer, str)
local n = #str
if n <= 0xFF then
buffer[#buffer+1] = char(0xC4, -- bin8
n)
elseif n <= 0xFFFF then
buffer[#buffer+1] = char(0xC5, -- bin16
floor(n / 0x100),
n % 0x100)
elseif n <= 4294967295.0 then
buffer[#buffer+1] = char(0xC6, -- bin32
floor(n / 0x1000000),
floor(n / 0x10000) % 0x100,
floor(n / 0x100) % 0x100,
n % 0x100)
else
error"overflow in pack 'binary'"
end
buffer[#buffer+1] = str
end
local set_string = function (str)
if str == 'string_compat' then
packers['string'] = packers['string_compat']
elseif str == 'string' then
packers['string'] = packers['_string']
elseif str == 'binary' then
packers['string'] = packers['binary']
else
argerror('set_string', 1, "invalid option '" .. str .."'")
end
end
m.set_string = set_string
packers['map'] = function (buffer, tbl, n)
if n <= 0x0F then
buffer[#buffer+1] = char(0x80 + n) -- fixmap
elseif n <= 0xFFFF then
buffer[#buffer+1] = char(0xDE, -- map16
floor(n / 0x100),
n % 0x100)
elseif n <= 4294967295.0 then
buffer[#buffer+1] = char(0xDF, -- map32
floor(n / 0x1000000),
floor(n / 0x10000) % 0x100,
floor(n / 0x100) % 0x100,
n % 0x100)
else
error"overflow in pack 'map'"
end
for k, v in pairs(tbl) do
packers[type(k)](buffer, k)
packers[type(v)](buffer, v)
end
end
packers['array'] = function (buffer, tbl, n)
if n <= 0x0F then
buffer[#buffer+1] = char(0x90 + n) -- fixarray
elseif n <= 0xFFFF then
buffer[#buffer+1] = char(0xDC, -- array16
floor(n / 0x100),
n % 0x100)
elseif n <= 4294967295.0 then
buffer[#buffer+1] = char(0xDD, -- array32
floor(n / 0x1000000),
floor(n / 0x10000) % 0x100,
floor(n / 0x100) % 0x100,
n % 0x100)
else
error"overflow in pack 'array'"
end
for i = 1, n do
local v = tbl[i]
packers[type(v)](buffer, v)
end
end
local set_array = function (array)
if array == 'without_hole' then
packers['_table'] = function (buffer, tbl)
local is_map, n, max = false, 0, 0
for k in pairs(tbl) do
if type(k) == 'number' and k > 0 then
if k > max then
max = k
end
else
is_map = true
end
n = n + 1
end
if max ~= n then -- there are holes
is_map = true
end
if is_map then
packers['map'](buffer, tbl, n)
else
packers['array'](buffer, tbl, n)
end
end
elseif array == 'with_hole' then
packers['_table'] = function (buffer, tbl)
local is_map, n, max = false, 0, 0
for k in pairs(tbl) do
if type(k) == 'number' and k > 0 then
if k > max then
max = k
end
else
is_map = true
end
n = n + 1
end
if is_map then
packers['map'](buffer, tbl, n)
else
packers['array'](buffer, tbl, max)
end
end
elseif array == 'always_as_map' then
packers['_table'] = function(buffer, tbl)
local n = 0
for k in pairs(tbl) do
n = n + 1
end
packers['map'](buffer, tbl, n)
end
else
argerror('set_array', 1, "invalid option '" .. array .."'")
end
end
m.set_array = set_array
packers['table'] = function (buffer, tbl)
packers['_table'](buffer, tbl)
end
packers['unsigned'] = function (buffer, n)
if n >= 0 then
if n <= 0x7F then
buffer[#buffer+1] = char(n) -- fixnum_pos
elseif n <= 0xFF then
buffer[#buffer+1] = char(0xCC, -- uint8
n)
elseif n <= 0xFFFF then
buffer[#buffer+1] = char(0xCD, -- uint16
floor(n / 0x100),
n % 0x100)
elseif n <= 4294967295.0 then
buffer[#buffer+1] = char(0xCE, -- uint32
floor(n / 0x1000000),
floor(n / 0x10000) % 0x100,
floor(n / 0x100) % 0x100,
n % 0x100)
else
buffer[#buffer+1] = char(0xCF, -- uint64
0, -- only 53 bits from double
floor(n / 0x1000000000000) % 0x100,
floor(n / 0x10000000000) % 0x100,
floor(n / 0x100000000) % 0x100,
floor(n / 0x1000000) % 0x100,
floor(n / 0x10000) % 0x100,
floor(n / 0x100) % 0x100,
n % 0x100)
end
else
if n >= -0x20 then
buffer[#buffer+1] = char(0x100 + n) -- fixnum_neg
elseif n >= -0x80 then
buffer[#buffer+1] = char(0xD0, -- int8
0x100 + n)
elseif n >= -0x8000 then
n = 0x10000 + n
buffer[#buffer+1] = char(0xD1, -- int16
floor(n / 0x100),
n % 0x100)
elseif n >= -0x80000000 then
n = 4294967296.0 + n
buffer[#buffer+1] = char(0xD2, -- int32
floor(n / 0x1000000),
floor(n / 0x10000) % 0x100,
floor(n / 0x100) % 0x100,
n % 0x100)
else
buffer[#buffer+1] = char(0xD3, -- int64
0xFF, -- only 53 bits from double
floor(n / 0x1000000000000) % 0x100,
floor(n / 0x10000000000) % 0x100,
floor(n / 0x100000000) % 0x100,
floor(n / 0x1000000) % 0x100,
floor(n / 0x10000) % 0x100,
floor(n / 0x100) % 0x100,
n % 0x100)
end
end
end
packers['signed'] = function (buffer, n)
if n >= 0 then
if n <= 0x7F then
buffer[#buffer+1] = char(n) -- fixnum_pos
elseif n <= 0x7FFF then
buffer[#buffer+1] = char(0xD1, -- int16
floor(n / 0x100),
n % 0x100)
elseif n <= 0x7FFFFFFF then
buffer[#buffer+1] = char(0xD2, -- int32
floor(n / 0x1000000),
floor(n / 0x10000) % 0x100,
floor(n / 0x100) % 0x100,
n % 0x100)
else
buffer[#buffer+1] = char(0xD3, -- int64
0, -- only 53 bits from double
floor(n / 0x1000000000000) % 0x100,
floor(n / 0x10000000000) % 0x100,
floor(n / 0x100000000) % 0x100,
floor(n / 0x1000000) % 0x100,
floor(n / 0x10000) % 0x100,
floor(n / 0x100) % 0x100,
n % 0x100)
end
else
if n >= -0x20 then
buffer[#buffer+1] = char(0xE0 + 0x20 + n) -- fixnum_neg
elseif n >= -0x80 then
buffer[#buffer+1] = char(0xD0, -- int8
0x100 + n)
elseif n >= -0x8000 then
n = 0x10000 + n
buffer[#buffer+1] = char(0xD1, -- int16
floor(n / 0x100),
n % 0x100)
elseif n >= -0x80000000 then
n = 4294967296.0 + n
buffer[#buffer+1] = char(0xD2, -- int32
floor(n / 0x1000000),
floor(n / 0x10000) % 0x100,
floor(n / 0x100) % 0x100,
n % 0x100)
else
buffer[#buffer+1] = char(0xD3, -- int64
0xFF, -- only 53 bits from double
floor(n / 0x1000000000000) % 0x100,
floor(n / 0x10000000000) % 0x100,
floor(n / 0x100000000) % 0x100,
floor(n / 0x1000000) % 0x100,
floor(n / 0x10000) % 0x100,
floor(n / 0x100) % 0x100,
n % 0x100)
end
end
end
local set_integer = function (integer)
if integer == 'unsigned' then
packers['integer'] = packers['unsigned']
elseif integer == 'signed' then
packers['integer'] = packers['signed']
else
argerror('set_integer', 1, "invalid option '" .. integer .."'")
end
end
m.set_integer = set_integer
packers['float'] = function (buffer, n)
local sign = 0
if n < 0.0 then
sign = 0x80
n = -n
end
local mant, expo = frexp(n)
if mant ~= mant then
buffer[#buffer+1] = char(0xCA, -- nan
0xFF, 0x88, 0x00, 0x00)
elseif mant == huge or expo > 0x80 then
if sign == 0 then
buffer[#buffer+1] = char(0xCA, -- inf
0x7F, 0x80, 0x00, 0x00)
else
buffer[#buffer+1] = char(0xCA, -- -inf
0xFF, 0x80, 0x00, 0x00)
end
elseif (mant == 0.0 and expo == 0) or expo < -0x7E then
buffer[#buffer+1] = char(0xCA, -- zero
sign, 0x00, 0x00, 0x00)
else
expo = expo + 0x7E
mant = floor((mant * 2.0 - 1.0) * ldexp(0.5, 24))
buffer[#buffer+1] = char(0xCA,
sign + floor(expo / 0x2),
(expo % 0x2) * 0x80 + floor(mant / 0x10000),
floor(mant / 0x100) % 0x100,
mant % 0x100)
end
end
packers['double'] = function (buffer, n)
local sign = 0
if n < 0.0 then
sign = 0x80
n = -n
end
local mant, expo = frexp(n)
if mant ~= mant then
buffer[#buffer+1] = char(0xCB, -- nan
0xFF, 0xF8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00)
elseif mant == huge or expo > 0x400 then
if sign == 0 then
buffer[#buffer+1] = char(0xCB, -- inf
0x7F, 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00)
else
buffer[#buffer+1] = char(0xCB, -- -inf
0xFF, 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00)
end
elseif (mant == 0.0 and expo == 0) or expo < -0x3FE then
buffer[#buffer+1] = char(0xCB, -- zero
sign, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00)
else
expo = expo + 0x3FE
mant = floor((mant * 2.0 - 1.0) * ldexp(0.5, 53))
buffer[#buffer+1] = char(0xCB,
sign + floor(expo / 0x10),
(expo % 0x10) * 0x10 + floor(mant / 0x1000000000000),
floor(mant / 0x10000000000) % 0x100,
floor(mant / 0x100000000) % 0x100,
floor(mant / 0x1000000) % 0x100,
floor(mant / 0x10000) % 0x100,
floor(mant / 0x100) % 0x100,
mant % 0x100)
end
end
local set_number = function (number)
if number == 'float' then
packers['number'] = function (buffer, n)
if floor(n) == n and n < maxinteger and n > mininteger then
packers['integer'](buffer, n)
else
packers['float'](buffer, n)
end
end
elseif number == 'double' then
packers['number'] = function (buffer, n)
if floor(n) == n and n < maxinteger and n > mininteger then
packers['integer'](buffer, n)
else
packers['double'](buffer, n)
end
end
else
argerror('set_number', 1, "invalid option '" .. number .."'")
end
end
m.set_number = set_number
for k = 0, 4 do
local n = tointeger(2^k)
local fixext = 0xD4 + k
packers['fixext' .. tostring(n)] = function (buffer, tag, data)
assert(#data == n, "bad length for fixext" .. tostring(n))
buffer[#buffer+1] = char(fixext,
tag < 0 and tag + 0x100 or tag)
buffer[#buffer+1] = data
end
end
packers['ext'] = function (buffer, tag, data)
local n = #data
if n <= 0xFF then
buffer[#buffer+1] = char(0xC7, -- ext8
n,
tag < 0 and tag + 0x100 or tag)
elseif n <= 0xFFFF then
buffer[#buffer+1] = char(0xC8, -- ext16
floor(n / 0x100),
n % 0x100,
tag < 0 and tag + 0x100 or tag)
elseif n <= 4294967295.0 then
buffer[#buffer+1] = char(0xC9, -- ext&32
floor(n / 0x1000000),
floor(n / 0x10000) % 0x100,
floor(n / 0x100) % 0x100,
n % 0x100,
tag < 0 and tag + 0x100 or tag)
else
error"overflow in pack 'ext'"
end
buffer[#buffer+1] = data
end
function m.pack (data)
local buffer = {}
packers[type(data)](buffer, data)
return tconcat(buffer)
end
local unpackers -- forward declaration
local function unpack_cursor (c)
local s, i, j = c.s, c.i, c.j
if i > j then
c:underflow(i)
s, i, j = c.s, c.i, c.j
end
local val = s:byte(i)
c.i = i+1
return unpackers[val](c, val)
end
m.unpack_cursor = unpack_cursor
local function unpack_str (c, n)
local s, i, j = c.s, c.i, c.j
local e = i+n-1
if e > j or n < 0 then
c:underflow(e)
s, i, j = c.s, c.i, c.j
e = i+n-1
end
c.i = i+n
return s:sub(i, e)
end
local function unpack_array (c, n)
local t = {}
for i = 1, n do
t[i] = unpack_cursor(c)
end
return t
end
local function unpack_map (c, n)
local t = {}
for i = 1, n do
local k = unpack_cursor(c)
local val = unpack_cursor(c)
if k == nil or k ~= k then
k = m.sentinel
end
if k ~= nil then
t[k] = val
end
end
return t
end
local function unpack_float (c)
local s, i, j = c.s, c.i, c.j
if i+3 > j then
c:underflow(i+3)
s, i, j = c.s, c.i, c.j
end
local b1, b2, b3, b4 = s:byte(i, i+3)
local sign = b1 > 0x7F
local expo = (b1 % 0x80) * 0x2 + floor(b2 / 0x80)
local mant = ((b2 % 0x80) * 0x100 + b3) * 0x100 + b4
if sign then
sign = -1
else
sign = 1
end
local n
if mant == 0 and expo == 0 then
n = sign * 0.0
elseif expo == 0xFF then
if mant == 0 then
n = sign * huge
else
n = 0.0/0.0
end
else
n = sign * ldexp(1.0 + mant / 0x800000, expo - 0x7F)
end
c.i = i+4
return n
end
local function unpack_double (c)
local s, i, j = c.s, c.i, c.j
if i+7 > j then
c:underflow(i+7)
s, i, j = c.s, c.i, c.j
end
local b1, b2, b3, b4, b5, b6, b7, b8 = s:byte(i, i+7)
local sign = b1 > 0x7F
local expo = (b1 % 0x80) * 0x10 + floor(b2 / 0x10)
local mant = ((((((b2 % 0x10) * 0x100 + b3) * 0x100 + b4) * 0x100 + b5) * 0x100 + b6) * 0x100 + b7) * 0x100 + b8
if sign then
sign = -1
else
sign = 1
end
local n
if mant == 0 and expo == 0 then
n = sign * 0.0
elseif expo == 0x7FF then
if mant == 0 then
n = sign * huge
else
n = 0.0/0.0
end
else
n = sign * ldexp(1.0 + mant / 4503599627370496.0, expo - 0x3FF)
end
c.i = i+8
return n
end
local function unpack_uint8 (c)
local s, i, j = c.s, c.i, c.j
if i > j then
c:underflow(i)
s, i, j = c.s, c.i, c.j
end
local b1 = s:byte(i)
c.i = i+1
return b1
end
local function unpack_uint16 (c)
local s, i, j = c.s, c.i, c.j
if i+1 > j then
c:underflow(i+1)
s, i, j = c.s, c.i, c.j
end
local b1, b2 = s:byte(i, i+1)
c.i = i+2
return b1 * 0x100 + b2
end
local function unpack_uint32 (c)
local s, i, j = c.s, c.i, c.j
if i+3 > j then
c:underflow(i+3)
s, i, j = c.s, c.i, c.j
end
local b1, b2, b3, b4 = s:byte(i, i+3)
c.i = i+4
return ((b1 * 0x100 + b2) * 0x100 + b3) * 0x100 + b4
end
local function unpack_uint64 (c)
local s, i, j = c.s, c.i, c.j
if i+7 > j then
c:underflow(i+7)
s, i, j = c.s, c.i, c.j
end
local b1, b2, b3, b4, b5, b6, b7, b8 = s:byte(i, i+7)
c.i = i+8
return ((((((b1 * 0x100 + b2) * 0x100 + b3) * 0x100 + b4) * 0x100 + b5) * 0x100 + b6) * 0x100 + b7) * 0x100 + b8
end
local function unpack_int8 (c)
local s, i, j = c.s, c.i, c.j
if i > j then
c:underflow(i)
s, i, j = c.s, c.i, c.j
end
local b1 = s:byte(i)
c.i = i+1
if b1 < 0x80 then
return b1
else
return b1 - 0x100
end
end
local function unpack_int16 (c)
local s, i, j = c.s, c.i, c.j
if i+1 > j then
c:underflow(i+1)
s, i, j = c.s, c.i, c.j
end
local b1, b2 = s:byte(i, i+1)
c.i = i+2
if b1 < 0x80 then
return b1 * 0x100 + b2
else
return ((b1 - 0xFF) * 0x100 + (b2 - 0xFF)) - 1
end
end
local function unpack_int32 (c)
local s, i, j = c.s, c.i, c.j
if i+3 > j then
c:underflow(i+3)
s, i, j = c.s, c.i, c.j
end
local b1, b2, b3, b4 = s:byte(i, i+3)
c.i = i+4
if b1 < 0x80 then
return ((b1 * 0x100 + b2) * 0x100 + b3) * 0x100 + b4
else
return ((((b1 - 0xFF) * 0x100 + (b2 - 0xFF)) * 0x100 + (b3 - 0xFF)) * 0x100 + (b4 - 0xFF)) - 1
end
end
local function unpack_int64 (c)
local s, i, j = c.s, c.i, c.j
if i+7 > j then
c:underflow(i+7)
s, i, j = c.s, c.i, c.j
end
local b1, b2, b3, b4, b5, b6, b7, b8 = s:byte(i, i+7)
c.i = i+8
if b1 < 0x80 then
return ((((((b1 * 0x100 + b2) * 0x100 + b3) * 0x100 + b4) * 0x100 + b5) * 0x100 + b6) * 0x100 + b7) * 0x100 + b8
else
return ((((((((b1 - 0xFF) * 0x100 + (b2 - 0xFF)) * 0x100 + (b3 - 0xFF)) * 0x100 + (b4 - 0xFF)) * 0x100 + (b5 - 0xFF)) * 0x100 + (b6 - 0xFF)) * 0x100 + (b7 - 0xFF)) * 0x100 + (b8 - 0xFF)) - 1
end
end
function m.build_ext (tag, data)
return nil
end
local function unpack_ext (c, n, tag)
local s, i, j = c.s, c.i, c.j
local e = i+n-1
if e > j or n < 0 then
c:underflow(e)
s, i, j = c.s, c.i, c.j
e = i+n-1
end
c.i = i+n
return m.build_ext(tag, s:sub(i, e))
end
unpackers = setmetatable({
[0xC0] = function () return nil end,
[0xC2] = function () return false end,
[0xC3] = function () return true end,
[0xC4] = function (c) return unpack_str(c, unpack_uint8(c)) end, -- bin8
[0xC5] = function (c) return unpack_str(c, unpack_uint16(c)) end, -- bin16
[0xC6] = function (c) return unpack_str(c, unpack_uint32(c)) end, -- bin32
[0xC7] = function (c) return unpack_ext(c, unpack_uint8(c), unpack_int8(c)) end,
[0xC8] = function (c) return unpack_ext(c, unpack_uint16(c), unpack_int8(c)) end,
[0xC9] = function (c) return unpack_ext(c, unpack_uint32(c), unpack_int8(c)) end,
[0xCA] = unpack_float,
[0xCB] = unpack_double,
[0xCC] = unpack_uint8,
[0xCD] = unpack_uint16,
[0xCE] = unpack_uint32,
[0xCF] = unpack_uint64,
[0xD0] = unpack_int8,
[0xD1] = unpack_int16,
[0xD2] = unpack_int32,
[0xD3] = unpack_int64,
[0xD4] = function (c) return unpack_ext(c, 1, unpack_int8(c)) end,
[0xD5] = function (c) return unpack_ext(c, 2, unpack_int8(c)) end,
[0xD6] = function (c) return unpack_ext(c, 4, unpack_int8(c)) end,
[0xD7] = function (c) return unpack_ext(c, 8, unpack_int8(c)) end,
[0xD8] = function (c) return unpack_ext(c, 16, unpack_int8(c)) end,
[0xD9] = function (c) return unpack_str(c, unpack_uint8(c)) end,
[0xDA] = function (c) return unpack_str(c, unpack_uint16(c)) end,
[0xDB] = function (c) return unpack_str(c, unpack_uint32(c)) end,
[0xDC] = function (c) return unpack_array(c, unpack_uint16(c)) end,
[0xDD] = function (c) return unpack_array(c, unpack_uint32(c)) end,
[0xDE] = function (c) return unpack_map(c, unpack_uint16(c)) end,
[0xDF] = function (c) return unpack_map(c, unpack_uint32(c)) end,
}, {
__index = function (t, k)
if k < 0xC0 then
if k < 0x80 then
return function (c, val) return val end
elseif k < 0x90 then
return function (c, val) return unpack_map(c, val % 0x10) end
elseif k < 0xA0 then
return function (c, val) return unpack_array(c, val % 0x10) end
else
return function (c, val) return unpack_str(c, val % 0x20) end
end
elseif k > 0xDF then
return function (c, val) return val - 0x100 end
else
return function () error("unpack '" .. format('%#x', k) .. "' is unimplemented") end
end
end
})
local function cursor_string (str)
return {
s = str,
i = 1,
j = #str,
underflow = function ()
error "missing bytes"
end,
}
end
local function cursor_loader (ld)
return {
s = '',
i = 1,
j = 0,
underflow = function (self, e)
self.s = self.s:sub(self.i)
e = e - self.i + 1
self.i = 1
self.j = 0
while e > self.j do
local chunk = ld()
if not chunk then
error "missing bytes"
end
self.s = self.s .. chunk
self.j = #self.s
end
end,
}
end
function m.unpack (s)
checktype('unpack', 1, s, 'string')
local cursor = cursor_string(s)
local data = unpack_cursor(cursor)
if cursor.i <= cursor.j then
error "extra bytes"
end
return data
end
function m.unpacker (src)
if type(src) == 'string' then
local cursor = cursor_string(src)
return function ()
if cursor.i <= cursor.j then
return cursor.i, unpack_cursor(cursor)
end
end
elseif type(src) == 'function' then
local cursor = cursor_loader(src)
return function ()
if cursor.i > cursor.j then
pcall(cursor.underflow, cursor, cursor.i)
end
if cursor.i <= cursor.j then
return true, unpack_cursor(cursor)
end
end
else
argerror('unpacker', 1, "string or function expected, got " .. type(src))
end
end
set_string'string_compat'
set_integer'unsigned'
if SIZEOF_NUMBER == 4 then
maxinteger = 16777215
mininteger = -maxinteger
m.small_lua = true
unpackers[0xCB] = nil -- double
unpackers[0xCF] = nil -- uint64
unpackers[0xD3] = nil -- int64
set_number'float'
else
maxinteger = 9007199254740991
mininteger = -maxinteger
set_number'double'
if SIZEOF_NUMBER > 8 then
m.long_double = true
end
end
set_array'without_hole'
m._VERSION = '0.5.2'
m._DESCRIPTION = "lua-MessagePack : a pure Lua implementation"
m._COPYRIGHT = "Copyright (c) 2012-2019 Francois Perrad"
return m
--
-- This library is licensed under the terms of the MIT/X11 license,
-- like Lua itself.
--

View File

@ -1,155 +0,0 @@
msgpack=require("e3pf-mp")
epf_protocol = Proto("e3pf", "e3team Protocol Framework")
packet_length = ProtoField.uint64("e3pf.packet_length", "Packet Length", base.DEC)
packet_id = ProtoField.uint8("e3pf.packet_id", "Packet ID", base.DEC)
-- Message: ClientHello
ch_protocol_version = ProtoField.uint32("e3pf.client_hello.protocol_version", "Protocol Version", base.DEC)
ch_client_random = ProtoField.string("e3pf.client_hello.client_random", "Client Random")
-- Client certificate: is a subtree
ch_client_x25519 = ProtoField.string("e3pf.client_hello.client_x25519", "Client X25519 Public Key")
-- Message: ServerHello
sh_protocol_version = ProtoField.uint32("e3pf.server_hello.protocol_version", "Protocol Version", base.DEC)
-- Server Certificate: is a subtree
sh_server_random = ProtoField.string("e3pf.server_hello.server_random", "Server Random")
sh_server_x25519 = ProtoField.string("e3pf.server_hello.server_x25519", "Server X25519 Public Key")
-- Struct: Certificate
-- Details: is a subtree
c_fingerprint = ProtoField.string("e3pf.certificate.fingerprint", "Fingerprint")
c_signature = ProtoField.string("e3pf.certificate.signature", "Signature")
-- Struct: Certificate.Details
c_d_name = ProtoField.string("e3pf.certificate.details.name", "Name")
c_d_not_before = ProtoField.string("e3pf.certificate.details.not_before", "Not Before")
c_d_not_after = ProtoField.string("e3pf.certificate.details.not_after", "Not After")
c_d_public_key = ProtoField.string("e3pf.certificate.details.public_key", "Public Key")
c_d_issuer_public_key = ProtoField.string("e3pf.certificate.details.issuer_public_key", "Issuer Public Key")
-- TODO: Claims
epf_protocol.fields = { packet_length, packet_id, ch_protocol_version, ch_client_random, ch_client_x25519, c_fingerprint, c_signature, c_d_name, c_d_not_before, c_d_not_after, c_d_public_key, c_d_issuer_public_key, sh_protocol_version, sh_server_random, sh_server_x25519 }
function dump(o)
if type(o) == 'table' then
local s = '{ '
for k,v in pairs(o) do
if type(k) ~= 'number' then k = '"'..k..'"' end
s = s .. '['..k..'] = ' .. dump(v) .. ','
end
return s .. '} '
else
return tostring(o)
end
end
function id_to_name(id)
if id == 1 then return "ClientHello"
elseif id == 2 then return "ServerHello"
elseif id == 3 then return "HandshakeFinished"
elseif id == 4 then return "ApplicationData"
end
end
local function table_to_hex(ctable)
local sb=''
for _, value in pairs(ctable) do
sb=sb .. string.format("%x", value)
end
return sb
end
local function cert_to_tree(rtree, name, ctable, buffer)
local rrtree = rtree:add(epf_protocol, buffer(), name)
local tree = rrtree:add(epf_protocol, buffer(), "Details")
local details = ctable[1]
tree:add(c_d_name, details[1])
tree:add(c_d_not_before, tostring(details[2]))
tree:add(c_d_not_after, tostring(details[3]))
tree:add(c_d_public_key, table_to_hex(details[4]))
tree:add(c_d_issuer_public_key, table_to_hex(details[5]))
rrtree:add(c_fingerprint, ctable[2])
rrtree:add(c_signature, table_to_hex(ctable[3]))
end
function epf_protocol.dissector(buffer, pinfo, tree)
length = buffer:len()
if length == 0 then return end
pinfo.cols.protocol = epf_protocol.name
local subtree = tree:add(epf_protocol, buffer(), "e3team Protocol Framework Data")
local dtree = subtree:add(epf_protocol, buffer(), "Packet Data")
local packet_length_flag = tonumber(buffer(0,8):le_uint64())
subtree:add_le(packet_length, buffer(0, 8))
local data = buffer(8, packet_length_flag)
local msgpack_data=''
local bytes_message = data:bytes()
for i=0, (bytes_message:len()-1) do
value=bytes_message:get_index(i)
msgpack_data=msgpack_data .. string.char(value)
end
local message_unpacked = msgpack.unpack(msgpack_data)
subtree:add(packet_id, message_unpacked[1]):append_text(" (" .. id_to_name(message_unpacked[1]) .. ")")
local packet_bytes = message_unpacked[2]
local packet_data=''
for _, value in pairs(packet_bytes) do
packet_data=packet_data .. string.char(value)
end
local packet = msgpack.unpack(packet_data)
if message_unpacked[1] == 1 then
-- CLIENT HELLO
dtree:add(ch_protocol_version, packet[1])
dtree:add(ch_client_random, table_to_hex(packet[2]))
dtree:add(ch_client_x25519, table_to_hex(packet[4]))
elseif message_unpacked[1] == 2 then
-- SERVER HELLO
dtree:add(sh_protocol_version, packet[1])
cert_to_tree(dtree, "Server Certificate", packet[2], buffer)
dtree:add(sh_server_random, table_to_hex(packet[3]))
dtree:add(sh_server_x25519, table_to_hex(packet[4]))
end
end
local function heuristic_checker(buffer, pinfo, tree)
length = buffer:len()
if length < 12 then return false end
local header_start_flag = buffer(8,1):uint()
if header_start_flag ~= 0x92 then return false end
local packet_length_flag = buffer(0,8):le_uint64()
local packet_length = length - 8
if tostring(packet_length) ~= tostring(packet_length_flag) then return false end
local packet_id = buffer(9,1):uint()
print("packet " .. packet_id)
if packet_id == 0x01 or packet_id == 0x02 or packet_id == 0x03 or packet_id == 0x04 then
epf_protocol.dissector(buffer, pinfo, tree)
return true
else
return false
end
end
epf_protocol:register_heuristic("tcp", heuristic_checker)