e3pf/libepf/src/handshake_stream.rs

828 lines
26 KiB
Rust
Raw Normal View History

2023-05-04 00:38:05 +00:00
use crate::ca_pool::{load_ca_pool, EpfCaPool};
use crate::danger_trace;
use crate::error::EpfHandshakeError;
use crate::pki::{
EPFCertificate, EpfPkiCertificateOps, EpfPrivateKey, EpfPublicKey, EPFPKI_PUBLIC_KEY_LENGTH,
};
use crate::protocol::{
encode_packet, recv_packet, EpfApplicationData, EpfClientHello, EpfClientState, EpfFinished,
EpfMessage, EpfServerHello, EpfServerState, PACKET_APPLICATION_DATA, PACKET_CLIENT_HELLO,
PACKET_FINISHED, PACKET_SERVER_HELLO, PROTOCOL_VERSION,
};
use async_trait::async_trait;
use chacha20poly1305::aead::{Aead, Payload};
2023-05-04 00:38:05 +00:00
use chacha20poly1305::{AeadCore, Key, KeyInit, XChaCha20Poly1305, XNonce};
use ed25519_dalek::{SecretKey, SigningKey};
use log::{debug, trace};
use rand::rngs::OsRng;
2023-05-04 00:38:05 +00:00
use rand::Rng;
use std::error::Error;
use std::io;
use tokio::io::{AsyncReadExt, AsyncWriteExt};
2023-05-04 00:38:05 +00:00
use x25519_dalek::{x25519, PublicKey, StaticSecret};
///// CLIENT /////
pub struct EpfClientUpgraded<T: AsyncWriteExt + AsyncReadExt> {
inner: T,
state: EpfClientState,
client_random: [u8; 24],
server_random: [u8; 16],
client_cert: Option<EPFCertificate>,
packet_queue: Vec<EpfMessage>,
server_cert: Option<EPFCertificate>,
cipher: Option<XChaCha20Poly1305>,
private_key: EpfPrivateKey,
2023-05-04 00:38:05 +00:00
public_key: PublicKey,
}
#[derive(Debug)]
pub enum ClientAuthentication {
Cert(Box<EPFCertificate>, EpfPrivateKey),
2023-05-04 00:38:05 +00:00
Ephemeral,
}
#[async_trait]
pub trait EpfClientUpgradable {
2023-05-04 00:38:05 +00:00
async fn upgrade(self, auth: ClientAuthentication) -> EpfClientUpgraded<Self>
where
Self: Sized + AsyncWriteExt + AsyncReadExt + Send;
}
#[async_trait]
2023-05-04 00:38:05 +00:00
impl<T> EpfClientUpgradable for T
where
T: AsyncWriteExt + AsyncReadExt + Send,
{
async fn upgrade(self, auth: ClientAuthentication) -> EpfClientUpgraded<Self>
where
Self: Sized + AsyncWriteExt + AsyncReadExt + Send,
{
danger_trace!(target: "EpfClientUpgradable", "upgrade(auth: {:?})", auth);
let private_key;
let public_key;
let cert;
match auth {
ClientAuthentication::Cert(cert_d, key) => {
trace!("----!!!!! CERT AUTHENTICATION !!!!!----");
cert = Some(cert_d);
private_key = key.clone();
public_key = PublicKey::from(&StaticSecret::from(private_key.to_bytes()));
2023-05-04 00:38:05 +00:00
}
ClientAuthentication::Ephemeral => {
cert = None;
let private_key_l: [u8; 32] = OsRng.gen();
let private_key_real = SigningKey::from(private_key_l);
public_key = PublicKey::from(&StaticSecret::from(private_key_real.to_bytes()));
private_key = private_key_real;
}
}
EpfClientUpgraded {
inner: self,
state: EpfClientState::NotStarted,
client_random: OsRng.gen(),
server_random: [0u8; 16],
client_cert: cert.map(|u| *u),
server_cert: None,
packet_queue: vec![],
cipher: None,
private_key,
public_key,
}
}
}
#[async_trait]
pub trait EpfClientHandshaker<S: AsyncWriteExt + AsyncReadExt + Unpin> {
async fn handshake(&mut self, cert_pool: EpfCaPool) -> Result<(), Box<dyn Error>>;
2023-05-04 00:38:05 +00:00
async fn upgrade(self) -> EpfClientStream<S>
where
Self: Sized;
}
#[async_trait]
2023-05-04 00:38:05 +00:00
impl<T: AsyncWriteExt + AsyncReadExt + Send + Unpin> EpfClientHandshaker<T>
for EpfClientUpgraded<T>
{
async fn handshake(&mut self, cert_pool: EpfCaPool) -> Result<(), Box<dyn Error>> {
match self.state {
EpfClientState::NotStarted => (),
2023-05-04 00:38:05 +00:00
_ => return Err(EpfHandshakeError::AlreadyTunnelled.into()),
}
// Step 1: Send Client Hello
2023-05-04 00:38:05 +00:00
self.inner
.write_all(&encode_packet(
PACKET_CLIENT_HELLO,
&EpfClientHello {
protocol_version: PROTOCOL_VERSION,
client_random: self.client_random,
client_certificate: self.client_cert.clone(),
client_x25519_public_key: self.public_key.to_bytes(),
},
)?)
.await?;
self.inner.flush().await?;
trace!("---- !!!!! SENT CLIENT HELLO");
self.state = EpfClientState::WaitingForServerHello;
let server_x25519_key;
// Step 2: Wait for Server Hello
loop {
trace!("waiting for server hello");
let packet = recv_packet(&mut self.inner).await?;
if packet.packet_id != PACKET_SERVER_HELLO {
self.packet_queue.push(packet);
continue;
}
let server_hello: EpfServerHello = rmp_serde::from_slice(&packet.packet_data)?;
self.server_random = server_hello.server_random;
if server_hello.protocol_version != PROTOCOL_VERSION {
2023-05-04 00:38:05 +00:00
return Err(EpfHandshakeError::UnsupportedProtocolVersion(
server_hello.protocol_version as usize,
)
.into());
}
self.server_cert = Some(server_hello.server_certificate);
server_x25519_key = server_hello.server_x25519_public_key;
break;
}
// Step 3: Validate Server Certificate
let cert_valid = self.server_cert.as_ref().unwrap().verify(&cert_pool);
if let Err(e) = cert_valid {
2023-05-04 00:38:05 +00:00
return Err(EpfHandshakeError::InvalidCertificate(e).into());
}
if let Ok(false) = cert_valid {
2023-05-04 00:38:05 +00:00
return Err(EpfHandshakeError::UntrustedCertificate.into());
}
// Server Cert OK
// Step 4: Build the cipher
let private_key = StaticSecret::from(self.private_key.to_bytes());
let their_public_key = PublicKey::from(server_x25519_key);
2023-05-04 00:38:05 +00:00
assert_ne!(
their_public_key.to_bytes(),
PublicKey::from(&private_key).to_bytes()
);
2023-05-04 00:38:05 +00:00
danger_trace!(
"pr: {}, their pub: {}, my pub: {}",
hex::encode(self.private_key.to_bytes()),
hex::encode(self.server_cert.as_ref().unwrap().details.public_key),
hex::encode(self.private_key.verifying_key().to_bytes())
);
let shared_key = private_key.diffie_hellman(&their_public_key).to_bytes();
2023-05-04 00:38:05 +00:00
trace!(
"server public key: {:x?}",
self.server_cert.as_ref().unwrap().details.public_key
);
danger_trace!("shared key: {}", hex::encode(shared_key));
let cc20p1305_key = Key::from(shared_key);
let cc20p1305 = XChaCha20Poly1305::new(&cc20p1305_key);
self.cipher = Some(cc20p1305);
let payload = Payload {
msg: &[0x42],
aad: &self.server_random,
};
let nonce = XNonce::from_slice(&self.client_random);
trace!("encrypting 0x42");
danger_trace!("aad: {:?} nonce: {:?}", payload.aad, nonce);
let encrypted_0x42 = match self.cipher.as_ref().unwrap().encrypt(nonce, payload) {
Ok(d) => d,
2023-05-04 00:38:05 +00:00
Err(_) => return Err(EpfHandshakeError::EncryptionError.into()),
};
2023-05-04 00:38:05 +00:00
self.inner
.write_all(&encode_packet(
PACKET_FINISHED,
&EpfFinished {
protocol_version: PROTOCOL_VERSION,
encrypted_0x42,
},
)?)
.await?;
self.inner.flush().await?;
self.state = EpfClientState::WaitingForFinished;
loop {
let packet = recv_packet(&mut self.inner).await?;
if packet.packet_id != PACKET_FINISHED {
self.packet_queue.push(packet);
continue;
}
let packet_finished: EpfFinished = rmp_serde::from_slice(&packet.packet_data)?;
trace!("trying to debug 0x42");
let payload = Payload {
msg: &packet_finished.encrypted_0x42,
aad: &self.server_random,
};
2023-05-04 00:38:05 +00:00
danger_trace!(
"ciphertext: {:?}, aad: {:?}, nonce: {:?}",
packet_finished.encrypted_0x42,
payload.aad,
nonce
);
let hopefully_0x42 = match self.cipher.as_ref().unwrap().decrypt(nonce, payload) {
Ok(d) => d,
Err(_) => {
return Err(EpfHandshakeError::EncryptionError.into());
}
};
if hopefully_0x42 != vec![0x42] {
2023-05-04 00:38:05 +00:00
return Err(EpfHandshakeError::MissingKeyProof.into());
}
break;
}
self.state = EpfClientState::Transport;
Ok(())
}
2023-05-04 00:38:05 +00:00
async fn upgrade(self) -> EpfClientStream<T>
where
Self: Sized,
{
let aad = self.server_random.clone();
let client_cert = self.client_cert.clone();
let packet_queue = self.packet_queue.clone();
let server_cert = self.server_cert.unwrap().clone();
let cipher = self.cipher.unwrap().clone();
let private_key = self.private_key.clone();
let public_key = self.public_key.clone();
let raw_stream = self.inner;
EpfClientStream {
raw_stream,
aad,
client_cert,
packet_queue,
server_cert,
cipher,
private_key,
public_key,
}
}
}
pub struct EpfClientStream<S: AsyncReadExt + AsyncWriteExt + Unpin> {
raw_stream: S,
aad: [u8; 16],
client_cert: Option<EPFCertificate>,
packet_queue: Vec<EpfMessage>,
server_cert: EPFCertificate,
cipher: XChaCha20Poly1305,
private_key: EpfPrivateKey,
2023-05-04 00:38:05 +00:00
public_key: PublicKey,
}
#[async_trait]
pub trait EpfStreamOps {
async fn write(&mut self, data: &[u8]) -> Result<(), Box<dyn Error>>;
async fn read(&mut self) -> Result<Vec<u8>, Box<dyn Error>>;
}
#[async_trait]
impl<S: AsyncReadExt + AsyncWriteExt + Unpin + Send> EpfStreamOps for EpfClientStream<S> {
async fn write(&mut self, data: &[u8]) -> Result<(), Box<dyn Error>> {
let nonce = XChaCha20Poly1305::generate_nonce(OsRng);
let payload = Payload {
msg: data,
aad: &self.aad,
};
let ciphertext = match self.cipher.encrypt(&nonce, payload) {
Ok(c) => c,
2023-05-04 00:38:05 +00:00
Err(_) => return Err(io::Error::new(io::ErrorKind::Other, "Encryption error").into()),
};
let application_data = EpfApplicationData {
protocol_version: PROTOCOL_VERSION,
encrypted_application_data: ciphertext,
nonce: nonce.try_into().unwrap(),
};
let packet = encode_packet(PACKET_APPLICATION_DATA, &application_data)?;
self.raw_stream.write_all(&packet).await?;
self.raw_stream.flush().await?;
Ok(())
}
async fn read(&mut self) -> Result<Vec<u8>, Box<dyn Error>> {
loop {
let packet = recv_packet(&mut self.raw_stream).await?;
if packet.packet_id != PACKET_APPLICATION_DATA {
self.packet_queue.push(packet);
continue;
}
let app_data: EpfApplicationData = rmp_serde::from_slice(&packet.packet_data)?;
let nonce = XNonce::from_slice(&app_data.nonce);
let payload = Payload {
msg: &app_data.encrypted_application_data,
aad: &self.aad,
};
let plaintext = match self.cipher.decrypt(nonce, payload) {
Ok(p) => p,
Err(_) => {
return Err(io::Error::new(io::ErrorKind::Other, "Decryption error").into())
}
};
return Ok(plaintext);
}
}
}
///// SERVER /////
pub struct EpfServerUpgraded<T: AsyncWriteExt + AsyncReadExt> {
inner: T,
state: EpfServerState,
client_random: [u8; 24],
server_random: [u8; 16],
client_cert: Option<EPFCertificate>,
packet_queue: Vec<EpfMessage>,
cipher: Option<XChaCha20Poly1305>,
cert: EPFCertificate,
private_key: EpfPrivateKey,
2023-05-04 00:38:05 +00:00
public_key: EpfPublicKey,
}
#[async_trait]
pub trait EpfServerUpgradable {
2023-05-04 00:38:05 +00:00
async fn upgrade(
self,
cert: EPFCertificate,
private_key: EpfPrivateKey,
) -> EpfServerUpgraded<Self>
where
Self: Sized + AsyncWriteExt + AsyncReadExt + Send;
}
#[async_trait]
2023-05-04 00:38:05 +00:00
impl<T: ?Sized> EpfServerUpgradable for T
where
T: AsyncWriteExt + AsyncReadExt + Send,
{
async fn upgrade(
self,
cert: EPFCertificate,
private_key: EpfPrivateKey,
) -> EpfServerUpgraded<Self>
where
Self: Sized + AsyncWriteExt + AsyncReadExt + Send,
{
EpfServerUpgraded {
inner: self,
state: EpfServerState::WaitingForClientHello,
server_random: OsRng.gen(),
client_random: [0u8; 24],
cert,
client_cert: None,
packet_queue: vec![],
cipher: None,
private_key: private_key.clone(),
public_key: private_key.verifying_key(),
}
}
}
#[async_trait]
pub trait EpfServerHandshaker<S: AsyncWriteExt + AsyncReadExt + Unpin> {
async fn handshake(&mut self, cert_pool: EpfCaPool) -> Result<(), Box<dyn Error>>;
2023-05-04 00:38:05 +00:00
async fn upgrade(self) -> EpfServerStream<S>
where
Self: Sized;
}
#[async_trait]
2023-05-04 00:38:05 +00:00
impl<T: AsyncWriteExt + AsyncReadExt + Send + Unpin> EpfServerHandshaker<T>
for EpfServerUpgraded<T>
{
async fn handshake(&mut self, cert_pool: EpfCaPool) -> Result<(), Box<dyn Error>> {
match self.state {
EpfServerState::WaitingForClientHello => (),
2023-05-04 00:38:05 +00:00
_ => return Err(EpfHandshakeError::AlreadyTunnelled.into()),
}
let client_public_key;
// Step 1: Wait for Client Hello
loop {
let packet = recv_packet(&mut self.inner).await?;
if packet.packet_id != PACKET_CLIENT_HELLO {
self.packet_queue.push(packet);
continue;
}
trace!("got client hello");
let client_hello: EpfClientHello = rmp_serde::from_slice(&packet.packet_data)?;
self.client_random = client_hello.client_random;
if client_hello.protocol_version != PROTOCOL_VERSION {
2023-05-04 00:38:05 +00:00
return Err(EpfHandshakeError::UnsupportedProtocolVersion(
client_hello.protocol_version as usize,
)
.into());
}
self.client_cert = client_hello.client_certificate;
client_public_key = client_hello.client_x25519_public_key;
trace!("exiting loop");
break;
}
// Step 2: Validate Client Certificate (if present)
if let Some(client_cert) = &self.client_cert {
let cert_valid = client_cert.verify(&cert_pool);
if let Err(e) = cert_valid {
2023-05-04 00:38:05 +00:00
return Err(EpfHandshakeError::InvalidCertificate(e).into());
}
if let Ok(false) = cert_valid {
2023-05-04 00:38:05 +00:00
return Err(EpfHandshakeError::UntrustedCertificate.into());
}
}
// Client Cert OK (if present)
trace!("client cert okay");
// Step 3: Send Server Hello
2023-05-04 00:38:05 +00:00
self.inner
.write_all(&encode_packet(
PACKET_SERVER_HELLO,
&EpfServerHello {
protocol_version: PROTOCOL_VERSION,
server_certificate: self.cert.clone(),
server_random: self.server_random,
server_x25519_public_key: PublicKey::from(&StaticSecret::from(
self.private_key.to_bytes(),
))
.to_bytes(),
},
)?)
.await?;
self.inner.flush().await?;
trace!("sent server hello");
self.state = EpfServerState::WaitingForFinished;
// Step 4: Build the cipher
let private_key = StaticSecret::from(self.private_key.to_bytes());
let their_public_key = PublicKey::from(client_public_key);
2023-05-04 00:38:05 +00:00
assert_ne!(
their_public_key.to_bytes(),
PublicKey::from(&private_key).to_bytes()
);
2023-05-04 00:38:05 +00:00
danger_trace!(
"pr: {}, their pub: {}, my pub: {}",
hex::encode(self.private_key.to_bytes()),
hex::encode(client_public_key),
hex::encode(self.private_key.verifying_key().to_bytes())
);
let shared_key = private_key.diffie_hellman(&their_public_key).to_bytes();
trace!("client public key: {:x?}", client_public_key);
danger_trace!("shared key: {}", hex::encode(shared_key));
let cc20p1305_key = Key::from(shared_key);
let cc20p1305 = XChaCha20Poly1305::new(&cc20p1305_key);
self.cipher = Some(cc20p1305);
let payload = Payload {
msg: &[0x42],
aad: &self.server_random,
};
let nonce = XNonce::from_slice(&self.client_random);
loop {
let packet = recv_packet(&mut self.inner).await?;
if packet.packet_id != PACKET_FINISHED {
self.packet_queue.push(packet);
continue;
}
let packet_finished: EpfFinished = rmp_serde::from_slice(&packet.packet_data)?;
let payload = Payload {
msg: &packet_finished.encrypted_0x42,
aad: &self.server_random,
};
trace!("trying to decrypt 0x42");
2023-05-04 00:38:05 +00:00
danger_trace!(
"ciphertext: {:?}, nonce: {:?}, aad: {:?}",
payload.msg,
nonce,
payload.aad
);
let hopefully_0x42 = match self.cipher.as_ref().unwrap().decrypt(nonce, payload) {
Ok(d) => d,
Err(_) => {
return Err(EpfHandshakeError::EncryptionError.into());
}
};
if hopefully_0x42 != vec![0x42] {
2023-05-04 00:38:05 +00:00
return Err(EpfHandshakeError::MissingKeyProof.into());
}
break;
}
let encrypted_0x42 = match self.cipher.as_ref().unwrap().encrypt(nonce, payload) {
Ok(d) => d,
2023-05-04 00:38:05 +00:00
Err(_) => return Err(EpfHandshakeError::EncryptionError.into()),
};
2023-05-04 00:38:05 +00:00
self.inner
.write_all(&encode_packet(
PACKET_FINISHED,
&EpfFinished {
protocol_version: PROTOCOL_VERSION,
encrypted_0x42,
},
)?)
.await?;
self.inner.flush().await?;
self.state = EpfServerState::WaitingForFinished;
self.state = EpfServerState::Transport;
Ok(())
}
2023-05-04 00:38:05 +00:00
async fn upgrade(self) -> EpfServerStream<T>
where
Self: Sized,
{
EpfServerStream {
aad: self.server_random,
server_cert: self.cert,
packet_queue: self.packet_queue,
client_cert: self.client_cert,
cipher: self.cipher.unwrap(),
private_key: self.private_key,
public_key: self.public_key,
2023-05-04 00:38:05 +00:00
raw_stream: self.inner,
}
}
}
pub struct EpfServerStream<S: AsyncReadExt + AsyncWriteExt + Unpin> {
raw_stream: S,
aad: [u8; 16],
client_cert: Option<EPFCertificate>,
packet_queue: Vec<EpfMessage>,
server_cert: EPFCertificate,
cipher: XChaCha20Poly1305,
private_key: EpfPrivateKey,
2023-05-04 00:38:05 +00:00
public_key: EpfPublicKey,
}
#[async_trait]
impl<S: AsyncReadExt + AsyncWriteExt + Unpin + Send> EpfStreamOps for EpfServerStream<S> {
async fn write(&mut self, data: &[u8]) -> Result<(), Box<dyn Error>> {
let nonce = XChaCha20Poly1305::generate_nonce(OsRng);
let payload = Payload {
msg: data,
aad: &self.aad,
};
let ciphertext = match self.cipher.encrypt(&nonce, payload) {
Ok(c) => c,
2023-05-04 00:38:05 +00:00
Err(_) => return Err(io::Error::new(io::ErrorKind::Other, "Encryption error").into()),
};
let application_data = EpfApplicationData {
protocol_version: PROTOCOL_VERSION,
encrypted_application_data: ciphertext,
nonce: nonce.try_into().unwrap(),
};
let packet = encode_packet(PACKET_APPLICATION_DATA, &application_data)?;
self.raw_stream.write_all(&packet).await?;
self.raw_stream.flush().await?;
Ok(())
}
async fn read(&mut self) -> Result<Vec<u8>, Box<dyn Error>> {
loop {
let packet = recv_packet(&mut self.raw_stream).await?;
if packet.packet_id != PACKET_APPLICATION_DATA {
self.packet_queue.push(packet);
continue;
}
let app_data: EpfApplicationData = rmp_serde::from_slice(&packet.packet_data)?;
let nonce = XNonce::from_slice(&app_data.nonce);
let payload = Payload {
msg: &app_data.encrypted_application_data,
aad: &self.aad,
};
let plaintext = match self.cipher.decrypt(nonce, payload) {
Ok(p) => p,
Err(_) => {
return Err(io::Error::new(io::ErrorKind::Other, "Decryption error").into())
}
};
return Ok(plaintext);
}
}
}
#[cfg(test)]
mod tests {
2023-05-04 00:38:05 +00:00
use crate::ca_pool::{EpfCaPool, EpfCaPoolOps};
use crate::handshake_stream::{
ClientAuthentication, EpfClientHandshaker, EpfClientUpgradable, EpfClientUpgraded,
EpfServerHandshaker, EpfServerUpgradable, EpfServerUpgraded, EpfStreamOps,
};
use crate::pki::{EPFCertificate, EPFCertificateDetails, EpfPkiCertificateOps};
use ed25519_dalek::{SecretKey, SigningKey};
use log::{debug, trace};
use rand::rngs::OsRng;
2023-05-04 00:38:05 +00:00
use std::net::SocketAddr;
use std::str::FromStr;
use std::time::{SystemTime, UNIX_EPOCH};
use tcp_test::channel;
use tokio::io::{AsyncReadExt, AsyncWriteExt};
use tokio::join;
use tokio::net::{TcpListener, TcpSocket, TcpStream};
use x25519_dalek::{PublicKey, StaticSecret};
#[tokio::test]
pub async fn stream_test() {
simple_logger::init().unwrap();
let tcp_listener = TcpListener::bind("0.0.0.0:36116").await.unwrap();
2023-05-04 00:38:05 +00:00
let tcp_client_future = TcpSocket::new_v4()
.unwrap()
.connect(SocketAddr::from_str("127.0.0.1:36116").unwrap());
let (a, b) = join![tcp_listener.accept(), tcp_client_future];
let (s, _) = a.unwrap();
let c = b.unwrap();
let server_private_key = SigningKey::from([1u8; 32]);
let client_private_key = SigningKey::from([2u8; 32]);
let mut server_cert = EPFCertificate {
details: EPFCertificateDetails {
name: "Testing Server Certificate".to_string(),
not_before: 0,
2023-05-04 00:38:05 +00:00
not_after: SystemTime::now()
.duration_since(UNIX_EPOCH)
.unwrap()
.as_secs()
+ 30,
public_key: server_private_key.verifying_key().to_bytes(),
issuer_public_key: [0u8; 32],
claims: Default::default(),
},
fingerprint: "".to_string(),
signature: [0u8; 64],
};
server_cert.sign(&server_private_key).unwrap();
2023-05-04 00:38:05 +00:00
debug!(
"{}",
hex::encode(server_private_key.verifying_key().to_bytes())
);
let mut client_cert = EPFCertificate {
details: EPFCertificateDetails {
name: "Testing Client Certificate".to_string(),
not_before: 0,
2023-05-04 00:38:05 +00:00
not_after: SystemTime::now()
.duration_since(UNIX_EPOCH)
.unwrap()
.as_secs()
+ 30,
public_key: client_private_key.verifying_key().to_bytes(),
issuer_public_key: [0u8; 32],
claims: Default::default(),
},
fingerprint: "".to_string(),
signature: [0u8; 64],
};
client_cert.sign(&client_private_key).unwrap();
let mut cert_pool = EpfCaPool::new();
let mut cert_pool_2 = EpfCaPool::new();
cert_pool.insert(&server_cert);
cert_pool.insert(&client_cert);
cert_pool_2.insert(&client_cert);
cert_pool_2.insert(&server_cert);
2023-05-04 00:38:05 +00:00
let mut c: EpfClientUpgraded<TcpStream> = EpfClientUpgradable::upgrade(
c,
ClientAuthentication::Cert(Box::new(client_cert), client_private_key),
)
.await;
let mut s: EpfServerUpgraded<TcpStream> =
EpfServerUpgradable::upgrade(s, server_cert, server_private_key).await;
let server_handshake_accept_task = tokio::spawn(async move {
trace!("starting server handshake listener");
s.handshake(cert_pool_2).await.unwrap();
let mut upgraded = s.upgrade().await;
assert_eq!(upgraded.read().await.unwrap(), vec![0x42, 0x42])
});
let client_handshake_send_task = tokio::spawn(async move {
trace!("starting client handshake sender");
c.handshake(cert_pool).await.unwrap();
let mut upgraded = EpfClientHandshaker::upgrade(c).await;
upgraded.write(&[0x42, 0x42]).await.unwrap();
});
let (a, b) = join![server_handshake_accept_task, client_handshake_send_task];
a.unwrap();
b.unwrap();
}
#[test]
pub fn x25519_sanity_check() {
let bob_key = StaticSecret::from([1u8; 32]);
let bob_pub = PublicKey::from(&bob_key);
let alice_key = StaticSecret::from([2u8; 32]);
let alice_pub = PublicKey::from(&alice_key);
let ss_1 = bob_key.diffie_hellman(&alice_pub);
let ss_2 = alice_key.diffie_hellman(&bob_pub);
assert_eq!(ss_1.to_bytes(), ss_2.to_bytes());
2023-05-04 00:38:05 +00:00
println!(
"SS: {}, B_p: {}, A_p: {}",
hex::encode(ss_1.to_bytes()),
hex::encode(bob_pub.to_bytes()),
hex::encode(alice_pub.to_bytes())
);
}
2023-05-04 00:38:05 +00:00
}